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Phytochromes regulate transcript levels of gibberellin
biosynthesis enzymes, GA 20-oxidases and/or GA 3β-
hydroxylases, in germinating lettuce and Arabidopsis seeds
and in de-etiolating pea seedlings. Feedback regulation of GA
biosynthesis by active GA is well established, but other
mechanisms for regulation of these biosynthetic genes
also exist, as this feedback does not operate on a GA
3β-hydroxylase gene of Arabidopsis during seed germination.
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Abbreviations
FR far-red light
GA gibberellin
LD long day
phy phytochrome
R red light
SD short day

Introduction
Although there are extensive studies to implicate gib-
berellin (GA) biosynthesis and metabolism in the
phytochrome-mediated control of different physiological
processes (e.g. seed germination and seedling growth),
the supporting evidence is sparse. Recently, many genes
encoding GA biosynthesis enzymes have been cloned
(Figure 1) [1,2,3•,4,5••] and this has made it possible to
study phytochrome regulation of GA biosynthesis at the
molecular level. Research on lettuce seed germination
led to the discovery of phytochrome almost half a centu-
ry ago, and it was later suggested that phytochrome
affects germination through GAs [6]. The regulation of
GA biosynthesis appears to be more complicated in
seedling growth than in seed germination [1]. Transfer of
etiolated pea seedlings to light changes the expression of
GA 20-oxidase genes. Tuber formation of potato is also
regulated by phytochrome and a role of GAs in that
process has been suggested [7•]. This review highlights
recent progress in understanding the regulation of GA
biosynthesis by phytochromes in selected developmen-
tal processes. 

Phytochrome regulation of GA biosynthesis
during seed germination
Seed germination is complex and is regulated by many fac-
tors such as nutrients, temperature, water and light [8].
Despite extensive studies on the roles of phytochrome

in light-stimulated seed germination [9,10,11•,12], the
molecular mechanisms of hormonal involvement in this
process are largely unknown. The cloning of GA biosyn-
thetic enzyme genes in lettuce and in Arabidopsis has
enabled the study of these mechanisms [13••,14••].

The endogenous content of GA1 — the main biologically
active GA in lettuce seeds — increases after red light (R)
treatment [15]. GA1 is synthesized from GA53 by two dif-
ferent 2-oxoglutarate dependent enzymes, GA 20-oxidase
and GA 3β-hydroxylase, acting successively as shown in
Figure 1. Lettuce seeds contain high levels of GA20 (about
one hundred times higher than of GA1) [15]. Two GA
20-oxidase genes (Ls20ox1 and Ls20ox2) and one GA
3β-hydroxylase (Ls3h1) are expressed in germinating seeds
(Figure 2a). The expression of Ls3h1 is induced by red
light treatment and this effect is canceled by far-red light
(FR) treatment. Expression of Ls20ox1 and Ls20ox2 is
induced by imbibition alone in the dark. The level of
Ls20ox2 mRNA decreases with red light treatment, where-
as that of Ls20ox1 is unaffected by light. These results
suggest that red light promotes GA1 synthesis by inducing
Ls3h1 expression via phytochrome action [13••]. It is well
known that GA 20-oxidation/accumulation of GA
20-oxidase mRNA is regulated by negative feedback of
active GAs [1]. Therefore, the down-regulation of Ls20ox2
expression could be the result of the increased GA1 con-
tent in germinating seeds. Interestingly, although the
exogenous application of high levels of GA1 decreases the
expression of Ls3h1, this gene was not affected by the
increase of endogenous GA1. Thus, there may be some
mechanism to suppress the feedback regulation of Ls3h1
during seed germination of lettuce. 

Arabidopsis ga4-1 is a GA deficient semi-dwarf mutant [16].
The GA4 gene was cloned by T-DNA tagging [1,4] and it
was shown to encode a GA 3β-hydroxylase [17]. Severe
alleles of the GA-deficient mutants ga1 [1,4], ga2 [18] and
ga3 [3•,19•] fail to germinate without exogenous applica-
tion of GAs [16], whereas even the putative null allele,
ga4-2, can germinate without GAs, suggesting the pres-
ence of another GA 3β-hydroxylase in germinating seeds.
Recently, a GA4 homolog (GA4H) was isolated and shown
to encode a GA 3β-hydroxylase [14••]. The GA4H gene
was found to be predominantly expressed during seed ger-
mination. Both GA4 and GA4H genes in imbibed seeds are
induced by red light treatment (Figure 2b). At least five
loci in Arabidopsis [20] encode phytochromes. Among
these, PHYB encodes phyB, which plays a major role in
germinating seeds shortly after the start of imbibition
[9,10], and it was suggested that absolute concentration of
the far red-absorbing form of phytochrome is important
[12]. In the phyB-deficient phyB-1 mutant, GA4H expres-
sion is not induced by red light, although GA4 expression
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still is, indicating that the red light-induced GA4 and
GA4H expression is mediated by one or more other phy-
tochromes (Figure 2b). In contrast to the GA4 [21] and
the Ls3h1 [13••] genes, GA4H is not regulated by a feed-
back inhibition mechanism in germinating seeds [14••]
(Note that Ls3h1 gene is down-regulated by applied GA1
but not by the elevated endogenous GA1 level after red
light). Although the endogenous GA levels of germinat-
ing ga4 and wild-type (WT) seeds have not yet been
analyzed, red light treatment is expected to increase the
level of biologically active GAs. The two GA 3β-hydrox-
ylases of Arabidopsis, therefore, seem to play different
physiological roles during light-induction of seed germi-
nation (Figure 2b).

Regulation of GA biosynthesis by photoperiod
The involvement of GAs in the photoperiod-induced bolt-
ing of long-day (LD) rosette plants is well documented [1].
In spinach (Spinacia oleracea), changes in GA concentra-
tions and enzyme activity in cell-free systems on transfer
from short days (SD) to LD are consistent with enhanced
oxidation of GA53 and GA19 in LD [22]. Furthermore,
there are higher amounts of GA 20-oxidase mRNA in
plants grown in LD than those in SD or in darkness [23].
Although GA53 20-oxidase activity is regulated by light,
oxidation of GA44, in the lactone form, remains at high con-
stant levels irrespective of the photoperiod. An expected
difference between spinach GA44 oxidase and the recom-
binant Arabidopsis GA 20-oxidase was observed in the

Figure 1

Gibberellin biosynthesis pathway.
Abbreviations: CPS, copalyl diphosphate
synthase; KS, ent-kaurene synthase; GA20ox,
GA 20-oxidase; GA3h, GA 3β-hydroxylase;
GA2h, GA 2β-hydroxylase (GA 2-oxidase).
ga1, ga2, ga3, ga4 and ga5 are GA
biosynthesis mutants of Arabidopsis.
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Figure 2

Proposed models of the mechanism of GA
control of seed germination in (a) lettuce and
(b) Arabidopsis. Arrows indicate positive
regulation. Feedback inhibition is shown by 
T-bar. In lettuce the two Ls20ox genes (20ox1
and 20ox2) are induced by imbibition.
However, 20ox1 is not regulated by light. The
3h1 gene (coding for a GA 3β-hydroxylase) is
feedback regulated by applied GA1 but not by
endogenous GA1. In Arabidopsis there are
two different GA 3β-hydroxylases (GA4 and
GA4H), both of which are controlled by
phytochrome. 
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stereospecific removal of a hydrogen atom during oxida-
tion of the C-20 alcohol intermediates [24]. This suggests
the existence of a specific enzyme that catalyzes the oxi-
dation of C-20 as a lactone. It might oxidize the alcohol
from in vivo.

Phytochrome regulation of GA biosynthesis
during seedling growth
Light inhibits stem elongation during photomorphogene-
sis [25], and the role that GAs (change of GA sensitivity
and/or metabolism) play in that process has been the sub-
ject of a long-standing controversy [1]. Recently, work from
two independent laboratories [26•] (Ait-Ali T et al.,
Abstract at page 48, and Gil J, García-Martínez JL, Abstract
at page 107, both at the 16th ICPGS, 10–16 August 1998,
Chiba, Japan) have shown a rapid (within two hours) and
reversible decrease of GA1 content (down to trace level) in
the apical shoot of etiolated pea seedlings upon light irra-
diation (Figure 3). The light, however, increases the
transcript levels coding for GA 20-oxidase and GA 3β-
hydroxylase in the apical shoot, indicating that they do not
contribute to the decrease of GA1 content induced by
light. Work with phyA- and phyB-deficient pea mutants
showed that the expression of GA 20-oxidase is regulated
by both phyA and phyB [26•]. The increase in the tran-
script accumulation is probably the result of feedback
inhibition due to the reduction of the GA1 level, because it
does not occur when the seedlings are treated with GA1
before irradiation. The concentration of GA8 — the inac-
tive product of GA1 metabolism — increases transiently in
irradiated seedlings (Gil J, García-Martínez JL, Abstract at
the 16th ICPGS, Japan), suggesting that GA
2β-hydroxylation may be regulated during de-etiolation.
The recent isolation of clones coding for 2β-hydroxylases
of Phaseolus coccineus and Arabidopsis [5••] should help to
clarify this issue.

Treatment with end-of-day (EOD)-far red irradiation
enhances stem elongation, and in cowpea also decreases
[3H]GA1 inactivation [27] and increases GA1 content in the
elongating region of the epicotyl, but not in the leaves —
an effect that can be reverted by subsequent red light

treatment (JL García-Martínez, unpublished data)
(Figure 3). This suggests that phytochrome may control
stem elongation by regulating GA 2β-hydroxylation in
light-grown seedlings. Work with the Arabidopsis ga1 phyB
double mutant has shown that the full phyB mutant phe-
notype is expressed only in the presence of a completely
functional GA system [28]. However, the role of phy-
tochrome in the regulation of GA biosynthesis in
light-grown plants is not clear. The overexpression of oat
PHYA in tobacco [29] and hybrid aspen [30] decreases the
content of active GAs and results in a short phenotype, that
can be reversed by GA application. Potato plants overex-
pressing the antisense potato PHYB gene are taller and
contain more GA1 in the apical shoot (S Prat, personal com-
munication). However, the phyB mutants of pea (lv),
cucumber (lh) and Arabidopsis, which have an elongated
phenotype, show no consistent differences in GA content
compared to wild type [31–33]. Though some of these
apparently contradictory results could be explained by the
use of inappropriate plant materials for GA measurement
(e.g. dilution of responding tissue by non-responding tis-
sues), it seems clear that phytochrome regulates both GA
biosynthesis and GA signaling [33,34] (Figure 3).

Low irradiance enhances stem elongation and increases
the active GA levels in pea [35] and Brassica [36], an effect
probably mediated by phytochrome. Low irradiance
increases the transcript levels of GA 20-oxidase in pea
leaves (JL García-Martínez, unpublished data), and in
Brassica it reduces GA1 and GA8 conjugation [36].
Therefore, the effect of low irradiance on elongation seems
to be due to an increase of GA1 biosynthesis and to a
decrease of GA1 metabolism, in addition to an enhance-
ment of responsiveness to GA1, at least in pea [35].

Phytochrome regulation of GA biosynthesis
during tuber formation in potato
Tuber formation in potato depends on temperature and
nutrient conditions [7•]. It is inhibited by GA application,
and promoted by genetic and chemical blocking of GA
biosynthesis, suggesting that the process is regulated by
GAs [37]. This hypothesis is supported by the observation
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Figure 3

Role of phytochrome in the regulation of stem
growth by GAs. In etiolated pea seedlings, the
content of GA1 is rapidly reduced by an still
unknown mechanism. In light-grown
seedlings, light can modulate stem elongation
by changing its GA1 content (e.g. EOD-FR
enhancement of stem elongation associated
with an increase of GA1 in cowpea) or altering
its GA responsiveness (e.g. Arabidopsis and
cucumber).
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that the content of GA1 in the stolons is high when they are
elongating, and decreases when they start to swell after
transferring to inductive (high sucrose concentration) con-
ditions [38•]. The photoperiod controls tuber formation,
which is enhanced or absolutely dependent on short-day
(SD) conditions (as in Solanum tuberosum ssp. andigena)
[7•]. This photoperiod dependence is lost in anti-PHYB
potato lines, which also form tubers under long-day (LD)
conditions [39] (Figure 4). This indicates that phyB blocks
tuber formation by producing an inhibitor under non-
inductive LD, rather than by stimulating it under
inductive SD. The photoperiod signal is perceived in the
leaves, and grafting experiments have shown that wild-
type leaves produce a graft-transmissible inhibitor of tuber
formation, of unknown nature, that is absent in anti-PHYB
plants under LD [40•]. However, although anti-PHYB
transgenic potatoes form tubers under LD, as seen in wild-
type plants treated with inhibitors of GA biosynthesis,
they are taller than WT plants (as other phyB mutants), and
have a higher GA1 content in the apical shoot (S Prat, per-
sonal communication). This apparent paradox could be
explained if phyB stimulated the transport of either a GA
or a regulator of GA biosynthesis to the stolons under
LD — without transport to the stolons the substance
would accumulate in the leaves and thereby stimulate
shoot elongation (Figure 4). Clearly, the identification and
quantification of GAs separately in the leaves and stolons
of wild-type and anti-PHYB potatoes are necessary to clar-
ify the mechanism of phytochrome regulation and the
possible mediation of GAs during tuber formation.

Three clones coding for GA 20-oxidases, that are also
expressed in the stolons [41•], have recently been isolated
from potato leaves (StGA20ox1–3). Under SD (inductive)
conditions their transcript levels in the leaves fluctuate

during the 24 h photoperiod and show a peak 4 h after the
lights have been turned off. However, under non-inductive
conditions (30 min light-break during the dark period) a
second peak of StGA20ox1 and StGA20ox3 transcript levels
is observed later in the night. StGA20ox1, which is strongly
expressed in the leaves, may thus play a role in the
observed accumulation of GA1 in the shoot of anti-PHYB
potato. The role of these genes in the control of tuber for-
mation, however, is unclear, since nothing is known about
the phyB regulation of their expression in the stolons.
However, the observation that in LD tuber formation in a
potato dwarf mutant with a blockage in GA biosynthesis,
and in transgenic anti-GA 20-oxidase potatoes takes much
longer than in wild-type potatoes under SD (S Prat, per-
sonal communication) suggests that other factors in
addition to GAs are also involved.

Diurnal regulation of GA biosynthesis
The content of GAs changes diurnally [1], though the mean-
ing of these changes is still unclear. Sorghum is a SD plant,
and the phyB mutation advances the peaks of GA20 and GA1
and induces flowering in LD [42]. In wild-type plants, short
photoperiods that induce flowering also advance the GA20
and GA1 maxima, as in phyB mutants under LD [43•]. Thus,
phyB seems to control the daily regulation of GA20 biosyn-
thesis in sorghum. This hypothesis has received recent
support from work with potato. In this species (ssp. andige-
na) tuber formation is regulated by phyB (Figure 4), and LD
conditions, that prevent or delay tuberization, induce addi-
tional peaks of StGA20ox transcripts in the leaves, compared
to plants grown under inductive SD conditions [41•].

Conclusions
Germination of lettuce and Arabidopsis is regulated by phy-
tochrome and this is at least mediated by regulation of GA
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Figure 4

Proposed model for the role of phyB in the
regulation of tuber formation by GAs. In WT
plants containing phyB (left) LD (continuous
lines) stimulates, whereas SD (dashed lines)
prevents the synthesis and/or transport of an
inhibitor of tuber formation from the leaves to
the stolons, where it induces the accumulation
of GA1 inhibiting tuber formation. The nature
of the inhibitor is still unknown (e.g. GA1 itself,
a precursor of GA1 or an activator of GA1
biosynthesis in the stolons). In anti-PHYB
plants (right) LD can not stimulate the
synthesis and/or transport of the inhibitor,
therefore tuber formation is independent of
photoperiod. The anti-PHYB plants contain
more GA1 in the shoot and are taller, probably
due to the accumulation in the leaves of the
inhibitor as a result of its transport blockage
to the stolons, therefore favoring tuber
formation. 
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biosynthesis. The levels of GA 3β-hydroxylase transcripts
and endogenous GAs, at least in lettuce (GAs have not
been measured in Arabidopsis yet) are regulated by phy-
tochromes, but the mechanism to increase active GAs in
germinating seeds is probably different between them.
During the de-etiolation of pea seedlings, the endogenous
GA1 content in the apical shoot decreases drastically with-
in two hours of the plant being transferred from dark to
light. However, the drop of GA1 does not correlate well
with the changes of GA 20-oxidase and GA 3β-hydroxylase
gene expression induced by phytochrome, suggesting that
other GA biosynthetic genes are involved in the process.
Photoperiod is perceived by phyB in potato leaves, from
where an inhibitor of tuber formation seems to be trans-
ported to the stolons under non-inductive conditions. The
relationship between this inhibitor and GAs, which are also
inhibitors of tuber formation, is still unknown. 
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