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IN EUKARYOTIC CELLS, complex regu-
latory mechanisms must operate to en-
sure the temporal and spatial specificity
of intracellular membrane-trafficking
pathways. Several stage-specific trans-
port components have been character-
ized, including proteins such as
SNAREs, Rab GTPases and Sec1 ho-
mologs, which maintain the fidelity of
the vesicle-docking and -fusion reac-
tions1. A key regulatory function has
also been demonstrated for phos-
phatidylinositol (PtdIns or PI) and its
phosphorylated derivatives, collec-
tively referred to as phosphoinositides.
Unlike the head groups of other phos-
pholipids, the inositol ring of PtdIns can
be reversibly phosphorylated at one or
a combination of positions (39, 49 or 59).
As a result, at least seven unique second-
messenger molecules are generated that
regulate diverse cellular processes, 
including growth, differentiation, cyto-
skeletal rearrangements and membrane
trafficking2,3.

Although present only transiently and
in low abundance within cells, phospho-
inositides can be highly concen-
trated within membrane microdomains.
Phosphoinositides are, therefore, ideally
suited to function as spatially restricted

membrane signals because: (1) both the
substrate (PtdIns) and products (phos-
phoinositides) are restricted to the
membrane site of modification; (2) the

synthesis and turnover of phosphoinosi-
tides can be temporally and spatially regu-
lated by a set of lipid kinases, lipid phos-
phatases and phospholipases; (3) the
localization of these kinases and phos-
phatases to discrete membrane sites re-
stricts signaling to a specific compartment
(or a specific domain of a compartment);
and (4) the structurally distinct phospho-
inositide products can activate unique
downstream targets or effectors.

Phosphoinositides were first estab-
lished as second messengers in signal-
transduction pathways by Berridge and
co-workers, who showed that agonist-
stimulated activation of phospholipase
C resulted in cleavage of PtdIns(4,5)P2
to generate soluble inositol(1,4,5)P3
[Ins(1,4,5)P3] and membrane-restricted
diacylglycerol (DAG). More recently,
phosphoinositide-signaling pathways
have also been found to regulate mem-
brane trafficking, raising numerous
questions. For example, what signals
activate phosphoinositide synthesis and
turnover, and how is this restricted to
specific membrane domains? What effec-
tors are activated by phosphoinositides
and how do these effectors modulate
membrane-trafficking pathways?
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Figure 1
Pathways for the synthesis and turnover of phosphoinositides in yeast. The synthesis path-
ways mediated by phosphatidylinositol (PtdIns or PI) kinases and PtdIns-phosphate kinases
are shown in green; phosphoinositide kinases are dark green and Vps15p and Frq1p (which
activate Vps34p and Pik1p, respectively) are light green. For simplicity, both of the PI
4-kinases in yeast, Pik1p and Stt4p, are shown together in the pathway for PtdIns4P
synthesis. The turnover pathways mediated by polyphosphoinositide (PPI) phosphatases
are shown in red. However, because their functional roles in vivo have not been extensively
characterized, the activities of the PPI phosphatases in yeast are shown collectively.
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In this article, we review insights 
into the phosphoinositide regulation 
of membrane trafficking, emphasizing
genetic studies in the budding yeast
Saccharomyces cerevisiae. Together,
these studies are beginning to reveal the
molecular details of how the regulated
synthesis and turnover of phospho-
inositides can direct specific vesicle-
mediated transport reactions.

PI 3-kinase regulation of vacuolar protein
sorting

A direct role for phosphoinositides in
membrane trafficking was originally
demonstrated by genetic studies of pro-
tein transport to the yeast vacuole (or
lysosome), an acidified organelle that
contains hydrolytic enzymes and serves
as a major site for macromolecular
turnover. More than 40 vacuolar protein
sorting (VPS) genes are required for
transport from the Golgi apparatus to
the vacuole. One of these genes, VPS34,
was found to encode a PI 3-kinase that
specifically phosphorylates PtdIns at

the D-3 position of the inositol ring to
produce PtdIns3P (Ref. 4; Fig. 1).
Temperature-sensitive vps34 mutant
cells exhibit an immediate defect in
both protein sorting to the vacuole and
PI 3-kinase activity when shifted to a
non-permissive temperature5, strongly
suggesting that the Vps34 PI 3-kinase
plays a direct role in vesicular transport
from the Golgi to the vacuole.

Vps34p is recruited from the cytosol
to the membrane and activated by the
VPS15 gene product, a membrane-
associated serine/threonine protein ki-
nase that catalyses an autophosphory-
lation reaction5,6. Vps15p kinase activity
is required for it to associate with
Vps34p, and membrane recruitment ac-
tivates (by more than ten times) the PI
3-kinase activity of Vps34p (Ref. 5). Like
vps34 mutant cells, inactivation of
Vps15p kinase activity causes a severe
decrease in cellular levels of PtdIns3P
and in mis-sorting of vacuolar hydro-
lases5, indicating that Vps15p serves as
an upstream regulator of Vps34p.

Biochemical studies have localized
Vps15p and Vps34p to Golgi- or 
endosome-enriched membrane fractions6,
suggesting a functional role for PtdIns3P
in membrane trafficking from the Golgi
to the endosome (Fig. 2).

The human homolog of Vps34p has
been cloned and is sensitive to nanomo-
lar concentrations of the fungal metabo-
lite wortmannin, a potent inhibitor of 
PI 3-kinases7. In vivo, wortmannin im-
pairs the biosynthetic transport of cath-
epsin D and the endocytic transport of
platelet-derived growth factor (PDGF)
receptor to the lysosome8–10; PDGF-re-
ceptor trafficking is also impaired in
cells microinjected with antibodies
against human Vps34p11. The human ho-
molog of Vps15p has also been cloned
and found to stimulate the PI 3-kinase
activity of human Vps34p12. Thus, syn-
thesis of PtdIns3P through the activa-
tion of a Vps15p–Vps34p kinase com-
plex in human cells appears to regulate
membrane trafficking to the lysosome in
a manner similar to that seen in yeast.

Effectors of Vsp34 PI 3-kinase signaling:
FYVE-domain proteins

How does PtdIns3P synthesis direct
vesicle-mediated protein transport?
Recent genetic and biochemical studies
in both yeast and mammalian cells have
uncovered a set of effector molecules
that bind directly to PtdIns3P. One of
these, the human early endosome au-
toantigen 1 (EEA1) protein, is a periph-
eral membrane protein that interacts
with the active form of the Rab5 GTPase.
EEA1 must associate with membranes
to stimulate homotypic endosome fu-
sion in vitro13. Membrane association of
EEA1 is blocked by wortmannin14, sug-
gesting that EEA1 binds to one or more
39-phosphorylated phosphoinositides.
Membrane binding of EEA1 also re-
quires a conserved RING domain of ~70
amino acids that has been termed the
FYVE domain, named after the first let-
ters of four proteins that were initially
found to contain this domain15. Like
other RING domains, the FYVE domain
binds two Zn21 atoms, which are coordi-
nated by eight cysteine or histidine
residues. However, a highly conserved
basic amino acid patch surrounds the
third cysteine residue of all FYVE do-
mains (Fig. 3a), distinguishing it from
other RING domains15.

In yeast, genetic and biochemical
studies have indicated that a number of
VPS-gene products function together
with the Vps15p–Vps34p complex at the
Golgi-to-endosome stage of vacuolar
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Model for the functional roles of yeast phosphatidylinositol (PtdIns or PI) kinases in mem-
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protein transport. One of these,
Vac1p/Vps19p, is a structural homolog
of EEA1. Like EEA1, Vac1p contains a
FYVE domain and is found as a periph-
eral membrane protein. Vac1p interacts
with PtdIns3P and the Rab5-GTPase ho-
molog Vps21p. Vac1p also interacts with
Pep12p, an endosomal t-SNARE, and
with the Sec1-protein-family member
Vps45p16,17. These multivalent interac-
tions coordinated by Vac1p might en-
sure the orderly progression of vesicle
tethering, SNARE-complex assembly
and vesicle fusion (Fig. 4). Point mu-
tations of the conserved cysteine
residues disrupt vacuolar protein sort-
ing18, which is consistent with the FYVE
domain of Vac1p playing an important
role in this process.

In addition to Vac1p, the FYVE domain
is present in four other yeast proteins
(Fig. 3a), including Vps27p, another pe-
ripheral membrane protein associated
with endosomal compartments. The
FYVE domains of mammalian EEA1 and
of yeast Vac1p, Vps27p, Fab1p and Pib1p
have all been shown to bind to liposomes
that contain PtdIns3P but not to lipo-
somes that contain other phosphoinosi-
tides, showing that the FYVE domain
specifically binds to PtdIns3P in vitro19–21.
In addition, green-fluorescent protein
(GFP) fused to the FYVE domain of EEA1
was shown to bind to intracellular mem-
branes in yeast19. This binding depended
on the PI 3-kinase activity of Vps34p,
showing that the GFP–FYVE-domain 
construct is a useful in vivo reporter for
membrane compartments that contain
PtdIns3P (Ref. 19).

Recent structural studies have firmly
established the FYVE domain as a

modular PtdIns3P-binding motif. The
crystal structure of the Vps27p FYVE do-
main has been determined to 1.15 Å res-
olution22 and the FYVE domain of EEA1
has been analysed by nuclear magnetic
resonance (NMR) spectroscopy23. Both
studies revealed a structure composed
of two pairs of antiparallel b strands that
are stabilized through the coordination
of two Zn21 atoms by the conserved cys-
teine and histidine residues. Most of the
positively charged amino acids that
compose the basic patch are contained
within the b1 strand and form a shallow
groove that can specifically accommo-
date the negatively charged phosphate
in the head group of PtdIns3P (Fig. 3b).
Based on the crystal structure of the
Vps27p FYVE domain, the basic pocket
is too small for PtdIns bis- or trisphos-
phate, which explains the absence of
binding to polyphosphoinositides.

The side-chain orientation of amino
acids lining this pocket forms an almost-
perfect binding site for the 39-phosphate
of PtdIns3P but is incompatible 
with binding the 49-phosphate of
PtdIns4P (Ref. 22). NMR analysis of the
EEA1 FYVE domain also showed that
binding of PtdIns3P is preferred over
PtdIns5P or PtdIns (Ref.23). Modeling of
the Vps27p FYVE domain suggested that
Leu185 and Leu186 could interact 
nonspecifically with the hydrophobic
region of the phospholipid bilayer
(Fig. 3b), which would help to orient the
FYVE domain and to stabilize its interac-
tion with the membrane22. This was also
suggested for the EEA1 FYVE domain,
which is consistent with the finding that
mutation of this region disrupted inter-
action with membranes in vivo23.

These structural studies of the FYVE
domain, together with the functional
analyses of Vac1p and EEA1 described
above, suggest that PtdIns3P functions
as a compartment-specific membrane
signal that acts sequentially to recruit 
or to activate distinct FYVE-domain-
containing effector proteins (Vac1p 
followed by Vps27p and Fab1p) that
then direct membrane-transport steps
in the vacuolar protein-sorting pathway
(Fig. 2). A high local concentration of
PtdIns3P on the membrane might also
drive Vac1p/EEA1-complex formation 
to stabilize vesicle docking before 
membrane fusion (Fig. 4).

Another phosphoinositide-binding
motif that has been well characterized is
the pleckstrin-homology (PH) domain, a
structurally conserved module of ~100
amino acids that is found in a wide vari-
ety of proteins. In contrast to FYVE do-
mains, PH domains have a broad range
of phosphoinositide-binding specifici-
ties3. In mammalian cells, both the dy-
namin GTPase (required for endocyto-
sis) and CAPS (a protein required for
calcium-regulated exocytosis) contain
PH domains that bind to PtdIns(4,5)P2
(Ref. 3). PH domains are also found in
several yeast proteins (Table 1) but
none of these have been linked directly to
membrane trafficking.

PtdIns3P 5-kinase regulation of the MVB
sorting pathway

Interestingly, the FYVE-domain-
containing protein Fab1p functions as a
PtdIns3P 5-kinase, phosphorylating
PtdIns3P to produce PtdIns(3,5)P2
(Fig. 1)24,25. Thus, Fab1p has a unique
regulatory role as both an effector 
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amino acid patch that forms the PtdIns3P-binding pocket. Reproduced, with permission, from
Ref. 22.



REVIEWS TIBS 25 – MAY 2000

232

protein of PtdIns3P and a kinase
that inactivates PI 3-kinase signal-
ing. Unlike PtdIns3P synthesis by
Vps34p, however, Fab1p kinase 
activity is not essential for mem-
brane trafficking to the vacuole.
Nevertheless, the loss of Fab1p
function causes a dramatic in-
crease in vacuole size as well as a
reduction in vacuolar hydrolytic
activity, caused in part by a defect
in acidification of the vacuole
lumen24. Synthesis of PtdIns(3,5)P2
is thus required for maintenance
of normal vacuolar morphology
and function.

PtdIns(3,5)P2 might be required
to control membrane-turnover
pathways. Membrane proteins tar-
geted for vacuolar degradation 
[including activated epidermal
growth factor (EGF) receptors in
mammalian cells and G-protein-
coupled pheromone receptors in
yeast] are sorted within multivesic-
ular bodies (MVBs), which are
formed by invagination of the endo-
somal membrane26,27. MVBs fuse
with the vacuole to deliver their
contents for degradation by the 
lipases and proteases within this 
organelle28 (Fig. 2).

Membrane vesicles have been
detected within the vacuole lumen
of mutant yeast cells that have 
reduced vacuolar hydrolase activ-
ity29; however, their numbers are
dramatically reduced in cells lacking
Fab1p kinase activity24.  In addition, fab1
mutant cells have a selective defect in
the sorting of cargo into the vacuole
lumen: this is instead delivered to the
outer limiting membrane of the vacuole27.
Without PtdIns(3,5)P2 synthesis, the de-
livery of additional membrane to the
vacuole surface could, at least partially,
contribute to the increase in vacuole
size seen in fab1 mutant cells.

Wortmannin inhibits the formation of
specialized MVBs involved in antigen
processing and presentation (MHC-
class-II compartments), resulting in the

accumulation of swollen endosomes30;
this is consistent with a role for 
39-phosphorylated phosphoinositides in
the regulation of MVBs. A mammalian
homolog of Fab1p, PIKfyve, has recently
been identified and shown to synthesize
PtdIns(3,5)P2 in vitro31, but the role of
PIKfyve in membrane trafficking has not
yet been investigated.

As both a FYVE-domain-containing ef-
fector of PI 3-kinase signaling and a
PtdIns3P 5-kinase, Fab1p functions at a
pivotal regulatory step in the spatial and
temporal control of protein sorting to the
vacuole. Conversion of PtdIns3P to

PtdIns(3,5)P2 would terminate the
recruitment or activation, or both,
of other FYVE-domain-containing
effector proteins that bind to
PtdIns3P. Simultaneously, Fab1p
activity would initiate a new
PtdIns(3,5)P2 signaling pathway.
Fab1p might therefore function as
a molecular switch that both inac-
tivates the endosome as an accep-
tor compartment for Golgi-derived
biosynthetic transport and also
signals MVB formation and endo-
some maturation before docking
and fusion with the vacuole.

As in the case of Vps34p, the
PtdIns3P 5-kinase signaling of
Fab1p might activate downstream
effectors that interact directly
with PtdIns(3,5)P2 to stimulate en-
dosome maturation and MVB sort-
ing. Potential candidate effectors
include one or more of a subset of
Vps proteins that, like Fab1p, are
needed for transport via the MVB
sorting pathway27. PtdIns(3,5)P2
could also be needed for mem-
brane efflux from the vacuole. A
recycling pathway from the vac-
uole to prevacuolar compart-
ments requires the VAC7 gene
product, a transmembrane pro-
tein identified in a screen for mu-
tants with defective vacuole inher-
itance32. Like fab1 mutant cells, vac7
mutants have enlarged vacuoles
and fail to synthesize PtdIns(3,5)P2

(Ref. 24), suggesting that Vac7p can 
regulate PtdIns(3,5)P2 synthesis or
turnover.

Terminating phosphoinositide signaling:
phosphoinositide phosphatases

To ensure their temporal and spatial
specificity, phosphoinositide signaling
pathways must be inactivated by a set
of phosphoinositide turnover mecha-
nisms. Consistent with this regulation,
cellular levels of PtdIns3P are rapidly de-
pleted when a temperature-sensitive
vps34 mutant is inactivated5, indicating
that the Vps34 PI 3-kinase directs the
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of PtdIns3P might be important for binding or activating
Vac1p, or both. The Vac1p-mediated assembly of this
transport apparatus ensures the orderly progression of
vesicle tethering, formation of the complex between 
t-SNARE (Pep12p) and v-SNARE (Vti1p), and vesicle 
fusion, which results in sorting of the carboxypeptidase Y
(CPY) receptor, Vps10p, as well as other cargo proteins
from the Golgi to the prevacuolar endosome. PtdIns3P,
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Table 1. Relationships between phosphatidylinositol kinase signaling pathways and downstream effector functions

PtdIns3P PtdIns(3,5)P2 PtdIns4P PtdIns4,5P2

Binding domain RING-FYVE (~70 aa) ? ? PH? (~100 aa)

Candidate effector proteinsa Vac1p, Vps27p, Fab1p ? ? Pld1p, Bem2p/3p
Boi1p/2p, Bud4p, Cdc24p, Rom2p, Stt4p

Membrane trafficking function Vacuolar protein sorting MVB sorting, vacuole size Secretion Actin cytoskeleton, endocytosis?

aEffector proteins in yeast indicated as having pleckstrin-homology (PH) domains have not been directly demonstrated to bind to phosphoinositides or shown to
function directly in membrane trafficking. Abbreviation: PtdIns, phosphatidylinositol.
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synthesis of a transient second-
messenger molecule.

Conversion to PtdIns(3,5)P2 repre-
sents one mechanism for inactivating
PtdIns3P (Fig. 1) but not all PtdIns3P is
phosphorylated by Fab1p24, suggesting
that other mechanisms operate in par-
allel to inactivate PI 3-kinase-mediated 
signaling. Surprisingly, elevated levels
of PtdIns3P have been found in yeast
mutants with defective vacuolar hydro-
lase activity, indicating that PtdIns3P is
also turned over by vacuolar degrada-
tion29. MVBs are likely to transport a
significant portion of PtdIns3P into the
vacuole (Fig. 2), as turnover of this pool
of PtdIns3P is blocked by late-acting vps
mutations that also prevent the fusion
of MVBs with the vacuole29. Because the
recruitment of FYVE-domain-containing
effector proteins occurs at the cytoplas-
mic face of the membrane, sorting 
of PtdIns3P into the internal membrane
vesicles of MVBs is also an effective
mechanism for attenuating PI 3-kinase
signaling.

The termination of other phospho-
inositide signaling pathways that regu-
late membrane trafficking appears to re-
quire cytoplasmic phosphatases. A role
for inositol lipid phosphatases in vesicu-
lar transport was initially suggested by
the finding that synaptojanin (a protein
in mammalian nerve cells that, with 
dynamin, is thought to participate in
synaptic-vesicle endocytosis and recy-
cling) is an inositol-polyphosphate 5-
phosphatase33 (Inp5). Yeast cells have
three genes that encode Inp5 proteins,
also referred to as synaptojanin-like (Sjl)
proteins (Table 2). As for synaptojanin
in neurons, Sjl1p/Inp51p and Sjl2p/
Inp52p in yeast appear to function in 
endocytosis34,35.

Mammalian synaptojanin and the
three yeast Inp5 proteins have a C-termi-
nal domain containing two consensus
sequences (HDVIFWLGDLNYRI and
PAWTDRILY) that are signature motifs of
inositol 5-phosphatases36. The 5-phos-
phatase domain from Sjl3p/Inp53p has
been shown in vitro to convert
PtdIns(4,5)P2 to PtdIns4P but does not
appear to use PtdIns4P, PtdIns3P or
PtdIns(3,5)P2 as a substrate37.

In addition to having a C-terminal 
5-phosphatase domain, mammalian
synaptojanin and the Inp5 proteins in
yeast contain an N-terminal domain that
is also found in the yeast Sac1 protein
(Table 2). This Sac1 domain contains the
consensus sequence Cx5R(T/S), which 
is common to many other protein and 
inositol-polyphosphate phosphatases37.

In contrast to the 5-phosphatase do-
main, however, purified recombinant
Sac1 domains from both Inp53p and
synaptojanin can dephosphorylate
PtdIns4P, PtdIns3P and PtdIns(3,5)P2 but
not PtdIns(4,5)P2 (Ref. 37). Thus, both a
PtdIns(4,5)P2 5-phosphatase activity and
a polyphosphoinositide-phosphatase 
activity are coupled in the synaptojanin-
like proteins, which could be critical for
localized phosphoinositide turnover.

However, not all phosphoinositide
phosphatases in yeast exhibit this ap-
parent dual functionality. Inp54p con-
tains a 5-phosphatase domain but not a
Sac1 domain (Table 2) and, although
Inp51p contains both Sac1 and 5-phos-
phatase domains, its Sac1 domain has
multiple substitutions of conserved
residues important for catalytic activ-
ity36,37. Similarly, neither Sac1p nor Fig4p
(another protein in yeast that contains a
Sac1 domain) contain a C-terminal 
5-phosphatase domain (Table 2).

Mutations in SAC1 have been found to
suppress a deletion of SEC14, enabling
cells to maintain Golgi secretory function
in the absence of Sec14p PtdIns or phos-
phatidylcholine (PtdCho) binding and
transfer activity38. How might cells 
overcome the requirement for SEC14, a
gene that is normally essential for viabil-
ity? In addition to the sac1 mutation, a
loss of Sec14p function can be bypassed
by mutations that block PtdCho biosyn-
thesis via the cytosine 59-diphosphate
(CDP)–choline pathway39. In both cases,
the Sec14p bypass requires  phospho-
lipase D (PLD) activity, which hydrolyses
PtdCho to yield phosphatidic acid (PA)40,41.
Dephosphorylation of PA produces DAG,

which can then be utilized by the
CDP–choline pathway, suggesting that
DAG consumption via this route limits
Golgi secretory activity and contributes
to the lethality observed in sec14 mutant
cells.

The role of DAG in secretory-vesicle
formation, however, has been contro-
versial. Although overexpression of a
bacterial DAG kinase (which converts
DAG back to PA) prevents cells from by-
passing the sec14 mutation42, increased
DAG levels are not observed in either
sac1 mutant cells43 or cells with mu-
tations that block the CDP–choline path-
way40. Furthermore, DAG kinase added
to permeabilized mammalian cells stim-
ulated PLD-dependent secretory-vesicle
formation more than did adding a
PtdIns-specific phospholipase C that
generates DAG (Ref. 44). Thus, in-
creased levels of PA, and not DAG, might
be responsible for maintaining secre-
tory competence in the absence of
Sec14p function in yeast.

A role for DAG in Golgi secretory
function appeared to gain support from
the finding that sac1 mutant cells accu-
mulated sixfold higher levels of manno-
syldi inositolphosphor ylceramide
[M(IP)2C], an inositol sphingolipid42.
Because two molecules of DAG are pro-
duced for every molecule of M(IP)2C
synthesized, this apparent observation
explained why a loss of Sac1p function
could lead to elevated DAG production.
More recent studies, however, have
showed that this inositol lipid had been
misidentified42 and that sac1 mutant cells
actually accumulate PtdIns4P (Refs.
43,45).
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Vps34p
Pik1p
Stt4p
Fab1p
Mss4p

PI 3-kinase
PI 4-kinase
PI 4-kinase
PtdIns3P 5-kinase
PtdIns4P 5-kinase 

875
1066
1900
2278
779

946
1183
1107
384
623
879

Sjl1p/Inp51p
Sjl2p/Inp52p
Sjl3p/Inp53p
Inp54p
Sac1p
Fig4p

PPI Ptase, 5-Ptase
PPI Ptase, 5-Ptase
PPI Ptase, 5-Ptase 
PPI 5-Ptase
PPI Ptase
PPI Ptase

Phosphoinositide kinases

Polyphosphoinositide phosphatases 

Number of
amino acids 

Domain structure FunctionProtein

PI kinase domain  PIP kinase domain Sac1 domain (PPI Ptase)

PPI 5-Ptase domain

Abbreviations: PH, pleckstrin-homology; PI and PtdIns, phosphatidylinositol; 
PPI, polyphosphoinositide; Ptase, phosphatase

FYVE domain PH domain transmembrane domain

Table 2. Kinases and phosphatases involved in phosphoinositide synthesis and turnover 
in yeast
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The increased levels of PtdIns4P
observed upon loss of Sac1p function in
sec14 mutant cells is consistent with
the recent finding that the Sac1 domain
has PtdIns4P-phosphatase activity37.
Nevertheless, the connection between
PtdIns4P synthesis and Sec14p function
is still unclear. For example, PLD 
activity remains essential for the sac1
mutation to cause a bypass of the
Sec14p requirement45, indicating that
increases in PtdIns4P levels cannot be
solely responsible for relieving the se-
cretory defects observed in sec14 mu-
tant cells. In addition, expression of a
mutant sec14 allele that binds PtdCho
but not PtdIns can rescue a deletion of
the SEC14 gene independently of PLD ac-
tivity46. This surprising observation not
only confirms that the PtdIns binding and
transfer activity of Sec14p can be dis-
pensable (which could have been as-
sumed because of the ability to isolate
mutants that bypass a SEC14 deletion)
but also indicates that PtdCho-bound
Sec14p can function effectively without
PLD-mediated production of PA or DAG.
Because PtdCho-bound Sec14p has been
found to inhibit the CDP–choline path-
way (and, hence, DAG consumption) di-
rectly47, it remains possible that DAG
plays a significant role in Golgi secretory-
vesicle formation.

PI 4-kinase regulation of secretion
A role for PtdIns4P synthesis in regulat-

ing secretion is supported by a recent
analysis of phosphoinositide levels in
temperature-sensitive sec14 mutant cells,
in which a specific decrease in the level 
of PtdIns4P was demonstrated upon in-
activation of Sec14p48. This finding is con-
sistent with the observation that PtdIns-
bound Sec14p stimulates PtdIns4P
synthesis in vivo46. Binding or transfer of
PtdIns by Sec14p therefore appears to
have a role in PtdIns4P synthesis, which
might directly affect Golgi secretory 
function.

Recent studies strongly suggest that
the pool of PtdIns4P affected by Sec14p
function is synthesized by Pik1p, one 
of two PI 4-kinases in yeast (Table 2).
Decreased PtdIns4P synthesis in 
temperature-sensitive pik1 mutant cells
has been found to correlate with a de-
fect in protein secretion (Ref. 48; A.
Audhya and S. Emr, unpublished). In ad-
dition, overexpression of Pik1p was
found to alleviate the temperature-
sensitive growth defects observed in
sec14 mutant cells, whereas overexpres-
sion of the other PI 4-kinase in yeast,
Stt4p, had no effect48.

Examination of pik1 mutant cells by
electron microscopy revealed the accu-
mulation of ‘Berkeley bodies’, unusual
membrane structures that are thought
to represent abnormal Golgi cisternae49.
Consistent with a defect in Golgi mor-
phology and transport function, pik1
mutant cells were also found to have a
partial defect in protein transport from
the Golgi to the vacuole (Ref. 49; A.
Audhya and S. Emr, unpublished).
Recent studies have shown that the
mammalian homolog of Pik1p, PI 
4-kinase b and an unidentified PtdIns4P
5-kinase can be recruited onto isolated
Golgi membranes by ARF, which stimu-
lates the synthesis of PtdIns4P and
PtdIns(4,5)P2

50. Indirect immunofluores-
cence analysis has localized Pik1p at the
Golgi in yeast, although a significant
amount was also found within the nu-
cleus49. Localization of Pik1p at the
Golgi might depend upon 
its interaction with Frq1p, a small myris-
toylated calcium-binding protein that
stimulates the PI 4-kinase activity of
Pik1p51.

Future directions
Genetic studies in yeast are beginning

to reveal how distinct pathways for syn-
thesis and turnover of phosphoinosi-
tides can regulate different membrane-
trafficking pathways in eukaryotic cells.
We now have a general understanding of
how PtdIns3P synthesis controls 
vesicle-mediated protein transport to
the vacuole. Recent studies have also
uncovered roles for PtdIns(3,5)P2 and
PtdIns4P in MVB sorting and secretion,
respectively.

However, many important questions
remain concerning phosphoinositide
regulation of membrane trafficking. For
example, what effectors function down-
stream of Fab1 PtdIns3P 5-kinase and
Pik1 PI 4-kinase signaling? Does the
other PI 4-kinase in yeast, Stt4p, have a
role in membrane trafficking? In mam-
malian cells, PtdIns4,P2 synthesis is 
required for regulated fusion of secretory
granules with the plasma membrane and
for clathrin-mediated endocytosis3 but
does PtdIns(4,5)P2 have a role in vesicu-
lar transport in yeast? Which of the
phosphoinositide phosphatases regu-
late vesicular transport and how is their
localization and activation controlled?
The role of phosphoinositide turnover
in membrane trafficking is also largely
unexplored. If the past is any indication,
then studies in yeast should continue 
to provide answers to many of these
questions.
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