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Developments in metabolic engineering
Douglas C Cameron∗ and Frank WR Chaplen†

The complete sequencing of several microbial genomes has
resulted in the increased availability of genes for metabolic
engineering. The number of databases and computational
tools to deal with this information has also increased. This
development has stimulated, and will continue to stimulate,
advances in metabolic engineering. Specific recent advances
include improvement of pathways for aromatic metabolites,
the development of a more complete understanding of the
effect of bacterial hemoglobin on cell performance, the
development of NMR-based methods for the monitoring
of intracellular metabolites and metabolic flux, and the
application of metabolic control analysis and metabolic flux
analysis to a variety of systems.
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Abbreviations
BST biochemical systems theory
CHO Chinese hamster ovary
DAHP 3-deoxy-D-arabino-heptulosonate 7-phosphate
MCA metabolic control analysis
MFA metabolic flux analysis
PEP phosphoenolpyruvate
PHB polyhydroxybutyrate
PTS phosphotransferase system
VHb Vitreoscilla hemoglobin

Introduction
The development of recombinant DNA technology has
led to the emergence of the field of metabolic engineering,
the purposeful and directed modification of intracellular
metabolism and cellular properties. Previous work in this
field has been the subject of several specific reviews
[1–3,4•,5•] and several general reviews [6–8]. The scope
of this review is work published in 1995 or later that was
not covered by Farmer and Liao [8]. This review is not
comprehensive in depth or breadth; rather, it highlights
selected examples and emerging trends.

During the past two years, the most significant event for
the field of metabolic engineering was the sequencing
of several entire microbial genomes. The first completely
sequenced genome, for the bacterium Haemophilus in-
fluenzae, was reported in July 1995 [9••]. Since then,

complete genome sequences have been reported for
Mycoplasma genitalium [10•], Methanococcus jannaschii [11•]
and Saccharomyces cerevisiae [12•]. The publication of the
complete genome sequence of Escherichia coli is imminent
(F Blattner, personal communication). In the past, the field
of metabolic engineering has been ‘information-limited’,
that is, progress has been slowed by the lack of gene
sequence information. With the availability of several
completely sequenced genomes, and many sequenced
genes from other organisms, the field is now, to quote
Bernhard Palsson of the University of California at San
Diego, ‘imagination-limited’. The impact of this large and
rapidly growing body of DNA sequence information on
metabolic engineering has yet to show up in the published
literature. However, the availability of such information is
a driving force for the development of this field.

This review is organized in a manner similar to that
of Cameron and Tong [7]. First, some recent examples
of metabolic engineering are described. Then, molecular
biological, analytical, and mathematical and computational
tools for metabolic engineering are discussed. Finally,
some future directions and considerations are presented.

Recent examples of metabolic engineering
Metabolic engineering has been used to improve the
production of existing metabolites, enable the production
of new metabolites, impart new catabolic activities, and
improve cell properties such as ‘performance’ under
suboptimal conditions.

Succinic acid is a metabolite of much interest as a
polymer intermediate and as a precursor for chemicals
such as 1,4-butanediol and tetrahydrofuran. Millard et al.
[13•] have demonstrated enhanced succinate production
in E. coli by the overexpression of phosphoenolpyruvate
(PEP) carboxylase. Another metabolite of much commer-
cial interest is lactic acid. Porro et al. [14•] expressed
a mammalian lactate dehydrogenase in S. cerevisiae and,
after some fermentation process development, demon-
strated significant lactic acid production by the modified
organism. Several groups have investigated the metabolic
engineering of Lactococcus lactis to modify the production
of diacetyl, acetoin, and 2,3-butanediol in this organism
[15•,16,17]. This system is especially interesting and
provides a challenge for metabolic engineering because
the product mix is determined by the interplay between
anaerobic and aerobic metabolism and between enzymatic
and nonenzymatic reactions.

The aromatic amino acids and related compounds are a
class of products that have been the subject of much
metabolic engineering effort [2]. PEP is an important in-
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termediate in these pathways. The common route for glu-
cose transport in E. coli is the glucose phosphotransferase
system (PTS), in which PEP is consumed during glucose
transport. Flores et al. [18••] have isolated E. coli strains
that are able to transport glucose by a system that does not
require PEP. These strains, which presumably have more
PEP available, were shown to have improved production
of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP),
the first intermediate in the common aromatic pathway. In
a further study, Gosset et al. [19•] combined several factors,
including a modified uptake system, and demonstrated a
20-fold increase in carbon commitment to the common
aromatic pathway in E. coli.

Another area of much metabolic engineering activity is
the production of polyhydroxybutyrate (PHB) and other
polyhydroxyalkanoates in bacteria, yeast and plants. An
novel application of this technology is the metabolic
engineering of PHB in cotton. John and Keller [20••]
expressed two PHB biosynthetic genes in cotton and
demonstrated the production of transgenic cotton fibers
containing PHB in the lumen of the fibers. Such fibers
exhibited improved insulating characteristics over normal
fibers.

An important application of metabolic engineering is
the construction of improved organisms for use in the
bioremediation of toxic waste [1]. Two recent examples
focus on extending the range of substrates that can be
catabolized by a single organism. Lee et al. [21] report the
construction of a hybrid strain of Pseudomonas putida that
is able to simultaneously mineralize benzene, toluene and
p-xylene without the accumulation of metabolic interme-
diates. Suyama et al. [22] constructed a hybrid Pseudomonas
that is able to grow on a wide range of hydrocarbons and
can efficiently degrade trichloroethylene.

A variety of modifications have been investigated to
improve cell properties. The most widely researched mod-
ification is the overexpression of Vitreoscilla hemoglobin
(VHb) to improve growth and product formation under
suboptimal oxygen levels [3,4•]. Tsai et al. [23•] report on
the influence of VHb on carbon and energy metabolism
in E. coli. In a related paper, Tsai et al. [24•] also explore
the mechanism by which this protein enhances growth and
protein production in E. coli. Kallio and Bailey [25] report
that VHb leads to enhanced growth and secreted protein
activity when expressed in Bacillus subtilis. In a further
study, VHb was overexpressed in Xanthomonas maltophilia,
an organism of interest for use in bioremediation, and
was found to enhance the ability of this organism to
degrade benzoic acid [26]. Another protein that has been
overexpressed to improve a bioremediation organism is
mouse metallothionein. The expression of this protein
confers cadmium tolerance and accumulation ability to the
cyanobacterium Synechoccocus [27]. Finally, Chaplen et al.
[28•] have overexpressed a bacterial glyoxalase I activity
in Chinese hamster ovary (CHO) cells and have shown

that these cells have both a lower level of intracellular
methylglyoxal, a toxic intermediate, and greater survival
ability in colony-forming assays than control cells without
enhanced glyoxalase I activity.

Molecular biological tools
Wang and Da Silva [29••] have developed a new approach
for the stable expression of multiple genes in yeast. These
genes were stable through 100 generations of growth
under nonselective conditions. The approach is based on
the Ty3 retrotransposon, and allows multiple rounds of
gene insertion at nonessential sites in yeast chromosomes.
Depending on the integration protocol utilized, it is
possible to achieve a specific number of gene insertions
with each insertion cycle. Subsequent cycles can be used
to insert further copies of the same gene, or copies of
different genes, resulting in considerable flexibility for
engineering new pathways and cell properties in yeast.

Work has progressed on the development of a transforma-
tion system for Thermoanaerobacterium thermosaccharolyticum
[30•]. This is a potentially important organism for
the production of ethanol, 1,2-propanediol and other
chemicals; however, because this organism has a branched
fermentation pathway, metabolic engineering may be
needed to improve the selectivity of the desired product.

Another useful development involves a baculovirus ex-
pression vector based on the viral ie1 promoter for protein
production during the early stages of insect cell infection
[31•]. The utility of this vector lies in its ability to express
proteins that can be incorporated into the basic protein
processing machinery of the cell for use in modifying
product proteins expressed later on. Budker et al. [32]
have developed an improved gene transfer system for
mammalian systems involving cationic liposomes. Also of
interest is the work of Mattanovich et al. [33•] on the
determination of the rate-limiting steps in gene expression
in E. coli for two widely utilized expression systems.

Analytical tools
Currently, the major analytical tool for performing real-
time analyses of metabolite flux and energy metabolism
is NMR. One drawback of in vivo NMR is that high
cell densities are required to obtain the necessary sensi-
tivity. This creates problems when dealing with aerobic
microorganisms because conventional reactor systems are
incapable of supplying the required oxygen. Hartbrich
et al. [34•] have developed a new reactor, the membrane
cyclone reactor, which can be operated in chemostat mode
and has high oxygen transfer capabilities, thus allowing
in vivo NMR in aerobic systems. This new design was
tested successfully with both an aerobe, Corynebacterium
glutamicum, and an anaerobe, Zymomonas mobilis. Another
way to get real-time information on metabolism is to
add an easily measured marker gene to an organism. An
application of this approach is the measurement of ATP
levels in E. coli transformed with firefly luciferase [35•].
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The bioluminescence was shown to correlate well with
intracellular ATP levels during the lag and exponential
growth phases.

A potentially powerful analytical technique for gaining
information on metabolic fluxes is the use of biosynthetic
fractional 13C-labeling of amino acids coupled with
two-dimensional NMR [36••]. This is not a real-time
method; however, it can be used in conjunction with
stoichiometric information to determine metabolic fluxes
that are difficult to determine by other means.

Mathematical and computational tools
As the body of biological information grows, bioinformatics
will become increasingly important. A recent issue of
Trends in Biotechnology [37] was devoted to this field
and provides several articles on current and future
developments. Of special interest is a comprehensive
listing of sources of bioinformation, including database
resources, such as EcoCyc, which is a database that
combines information about the genome and intermediary
metabolism of E. coli [38]. More than 2000 genes and 300
enzymes encoded by those genes are detailed. In addition,
580 metabolic reactions are organized into 100 metabolic
pathways.

A novel optimization strategy, based on a mixed-integer
linear programming formulation, for maximizing the
performance of a given metabolic network through the
selection of optimal regulatory constraints and enzyme
levels has been developed [39••]. This approach contrasts
with stoichiometric treatments of metabolic systems,
which do not contain any kinetic information, and cannot,
therefore, be used to quantify the effect of changes in
enzyme activities or regulatory constraints. It also differs
from biochemical systems theory (BST) and metabolic
control analysis (MCA), which only provide information
about the effect on the metabolic network of changes
in some external manipulated variable, such as enzyme
activity, and consequently do not allow optimization of the
regulatory superstructure.

Theoretical extensions of MCA allow the simplification
of metabolic networks for modeling or experimental
determination of control coefficients. Delgado and Liao
[40•] provide justification for lumping together groups of
reactions on the basis of their timescale separation, thus
reducing the number of control coefficients that need
to be determined. Rohwer et al. [41] indicate that it is
possible to recognize monofunctional units or subsystems
within a system. Subsystem metabolites are only produced
or consumed within the subsystem, or by a limited
number of fluxes crossing the subsystem boundary. The
advantage of recognizing monofunctional units is that only
one reaction within the unit need be perturbed during
the determination of the control structure of the overall
system. This results in a reduction in the number of
control coefficients that need to be determined. Another

theoretical development, which applies to systems with
moiety conserved cycles, details how the global control
properties of a system (flux and metabolite control
coefficients in MCA or logarithmic gains in BST) can be
expressed as a function of its local properties (elasticity
coefficients or kinetic orders) or vice versa, through a single
matrix inversion [42].

In addition to the various theoretical developments
related to the quantitative characterization of metabolic
systems, there have also been several examples of
the practical application of both MCA and metabolic
flux analysis (MFA) [43•–47•,48,49•]. Control coefficients
were determined for the first four enzymes involved in
glycolytic flux in Z. mobilis [43•]. Glucose-6-phosphate
dehydrogenase was found to have the highest control
coefficient (0.40), and overexpression of this enzyme
increased glycolytic flux by 10–13%. A quantitative model
describing penicillin synthesis in Penicillium chrysogenum
has been developed [44•]. The model enabled calculation
of the control and elasticity coefficients for the entire
pathway and of the various fluxes associated with penicillin
synthesis. In a separate study, the control coefficients for
the first two enzymes involved in penicillin biosynthesis
were determined [45•]. The initial step was found to be
rate-limiting (control coefficient close to 1) during the
early stages of a fed-batch production process, with control
shifting to the second step in the later stages.

Vanrolleghem et al. [46•] provide an excellent exam-
ple of validating a proposed metabolic network in
S. cerevisiae through experimental analysis and MFA.
Central metabolism in C. glutamicum was studied through
a combination of MFA and 13C NMR [47•]. In this
instance, a comprehensive treatment of all the metabolic
branch-points, rather than a portion of central metabolism,
would also allow extension to other systems. Zupke and
Stephanopoulos [48] developed a comprehensive approach
for metabolic flux determination in hybridoma cells using
13C NMR. Finally, Bonarius et al. [49•], in a study of
metabolic fluxes in the central metabolism of hybridoma
cells, show that the majority of glucose is utilized by the
pentose phosphate pathway under most conditions, but
especially in rapidly proliferating cells.

Conclusions, future directions and
considerations
The field of metabolic engineering is now fairly well
established and will advance rapidly in the future. As men-
tioned in the introduction, the availability of completely
sequenced genomes will contribute significantly to this
advance. Where it was once time consuming and costly to
obtain new genes, in many cases it is now just a matter of
searching on the Internet. The availability of sequenced
organisms will also lead to a deeper understanding of cell
physiology and metabolism. For example, Mushegian and
Koonin [50••] have compared the genomes of H. influenzae
and M. genitalium and concluded that only approximately



Biochemical engineering178

256 genes are necessary and sufficient for a modern-type
cell. Such an analysis indicates that current industrial
microorganisms may be more complicated than necessary
for any particular industrial application. Koob et al. [51]
have discussed the motivation for using simplified, or
minimized, cells in biotechnology and have proposed
a strategy, based on knowledge of the genome, for
minimizing E. coli. The selection and customization of
host organisms is already an important issue in metabolic
engineering [7,18••], and will become more so in the
‘post-genomic’ era.

Metabolic engineering owes its initial successes to re-
combinant DNA technology, which has made possible
the targeted modification of specific metabolic pathways
and cell properties. As the field matures, however, hybrid
approaches that involve both directed and evolutionary
steps are likely to become increasingly important. For
example, genetic engineering can first be used to add
a gene or set of genes to an organism; an evolutionary
approach, such as selection in a continuous reactor, can
then be used to achieve further improvements in factors
such as growth rate, regulatory properties or resistance
to toxic metabolites. On a related topic, combinatorial
methods will continue to be important in metabolic
engineering, especially for drug discovery. Such methods
have been particularly useful for the production of novel
polyketides; a recent example is reported by Kao et al. [52].
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