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ABSTRACT

Plant gene responses to changing carbohydrate status can vary markedly. Some
genes are induced, some are repressed, and others are minimally affected. As in
microorganisms, sugar-sensitive plant genes are part of an ancient system of
cellular adjustment to critical nutrient availability. However, in multicellular
plants, sugar-regulated expression also provides a mechanism for control of
resource distribution among tissues and organs. Carbohydrate depletion upregu-
lates genes for photosynthesis, remobilization, and export, while decreasing
mRNAs for storage and utilization. Abundant sugar levels exert opposite effects
through a combination of gene repression and induction. Long-term changes in
metabolic activity, resource partitioning, and plant form result. Sensitivity of
carbohydrate-responsive gene expression to environmental and developmental
signals further enhances its potential to aid acclimation. The review addresses
the above from molecular to whole-plant levels and considers emerging models
for sensing and transducing carbohydrate signals to responsive genes.
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INTRODUCTION

In plants and microorganisms, sugars not only function as substrates for growth
but affect sugar-sensing systems that initiate changes in gene expression. Both
abundance and depletion of carbohydrates can enhance or repress expression
of genes. Responses vary depending on the carbohydrate, though metabolic
flux may be more important than actual levels of carbon resources. Many
sugar-modulated genes have direct and indirect roles in sugar metabolism,
which suggests that their altered expression may have adaptive value. Not only
do collective, long-term changes in metabolism result, but patterns of carbo-
hydrate allocation among plant parts can also be altered.

The existence and potential importance of sugar-regulated gene expression
in plants has become apparent only in the past few years. Previous evidence
indicated that sugar supplies could alter enzyme activities, metabolism, and
development, but these data and their signif icance were generally not viewed
in the context of gene expression. Initial work on photosynthetic genes and
their metabolic effectors is reviewed by Sheen (161) and discussed by Stitt et
al (175). Thomas & Rodriguez (187) summarize metabolite regulation in cereal
seedlings and further appraise the germinating cereal seed as a model system
(188). Koch & Nolte (84) relate advances in sugar-modulated gene expression
to effects on transport paths. Classical aspects of altered carbohydrate avail-
ability  on whole-plant and organ processes are appraised by Farrar & Williams
(34) and Wardlaw (199), with updates by Geiger et al (43), Quick & Schaffer
(139), and Pollock & Farrar (134). Information on sugar-responsive gene
expression is also available for microbial (15, 40, 150, 158, 192) and animal
systems (195).

CARBOHYDRATES AS SUBSTRATES AND SIGNALS

Biological Significance

In microbes, carbohydrate signals to sugar-responsive genes provide a way for
these organisms to adjust to changes in availability  of essential nutrients. This
capacity is vital to their survival and/or effective competition. Classic examples
include control of the lactose operon in Escherichia coli  and the glucose
responsive genes for sugar metabolism in Saccharomyces cerevisiae (15, 40,
150, 158, 192). Similar responses have more recently been identif ied in uni-
cellular algae (9, 93, 155, 172).

In multicellular organisms, however, acclimation to altered carbohydrate
availability  occurs within a complex structure. Sugar-regulated genes provide
a means not only for integrating cellular responses to transport sugars (carrying
information on carbohydrate status of the whole) but also for coordinating
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changes in resource utilization and allocation among parts. In addition, carbo-
hydrate-responsive genes can effect changes in organismal development.

For plants in particular, carbohydrate-regulated genes represent an especially
valuable mechanism for adjusting to environmental change. Plants are extremely
sensitive and responsive to their surroundings because immobility  leaves them
few options for survival other than acclimation. Sugar concentrations vary over
a wide range in plant tissues. This range typically exceeds that found in more
homeostatic systems (such as the mammalian blood stream) and provides plants
with both a broader range of signals and a greater challenge to adjustment.
Sugar-mediated changes in gene expression are also unique in plants because
changes in carbohydrate allocation can ultimately modulate form through
processes affecting import/export balance (photosynthesis vs utilization).

Effects of carbohydrate availability  on expression of specific genes may
complement and amplif y the influence of more immediate metabolic controls.
Although gene-level responses are slower, they provide a magnitude and
duration of change that cannot be accommodated by other means of regulation.
The signals and regulatory mechanisms controlling the two processes appear
to be quite dif ferent.

“FEAST AND FAMINE” RESPONSES AT THE GENE
EXPRESSION LEVEL
“Feast and famine” is used here in a relative context and is not necessarily
based on absolute levels of carbohydrate (see section on Carbohydrate-Sensing
Systems). In the same way, “sugar-modulated,” “carbohydrate-responsive,”
and “metabolite-regulated” gene expression are broadly inclusive. Transcrip-
tional regulation is usually implied and is substantiated in many instances (77,
89, 160, 161), but message stability  and turnover can also be involved (162).
In any case, the ultimate effects of altered mRNA levels depend on the efficacy
of translation, turnover and/or modif ication of protein products, and the me-
tabolic context into which such changes are introduced.

The overall theme of Tables 1 and 2, together with discussion of salient
features in this section, is that of carbohydrate-responsive gene expression as
a mechanism for plant adjustment to altered availability  of this essential re-
source. Known examples of sugar-responsive gene expression are organized
by carbon-exporting and -importing tissues to help clarify the potential of their
collective relevance to each. In general, carbohydrate depletion enhances ex-
pression of genes for photosynthesis, reserve mobilization, and export proc-
esses (Table 1), whereas abundant carbon resources favor genes for storage
and utilization (Table 2). These effects, summarized schematically in Figure
1, reinforce the suggestion that sugar-responsive genes provide a means of
adjusting whole-plant resource allocation and may ultimately contribute to
adaptive changes in form.
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Table 1 “Famine” genes: enhanced by sugar depletion

Genes/enzymes (function) Evidence: plant, tissue Effectors tested Refs

Photosynthesis
Rubisco S–subunit [rbcS] Zea protoplast, trans expr

tomato lvs
Chenopodium cell cult +
tobacco and potato plants
tobacco leaf protoplasts

S, acet
S, G
G
S, G + girdl
G

160, 161
194
89
89
25

Rubisco L–subunit [rbcL] Chlorogonium cell cult acet 9, 172
chl a/b–binding protein (cab,

   Lhcb)
Zea protoplasts, trans expr
Chenopodium cell cult
tobacco leaf protoplasts
rape cell cult
Chlamydomonas cults

S, G, acet, oth
G
G, S
G
acet

160, 161
89
25
55
79

atp-δ thylakoid ATPase Chenopodium cell cult G 89
malic enzyme, C4 [Me1] Zea protoplasts, trans expr S, G, acet, oth 160, 161
PEP carboxylase, C4 [Pepc1] Zea protoplasts, trans expr S, G, acet, oth 160, 161
triose-phosphate translocator tobacco lvs S 82
pyruvate PPdikin [Ppdk1] Zea protoplasts, trans expr S, G, acet, oth 160, 161
C4-pyruvate phosphodikinase Zea protoplasts, trans expr 160, 161
(C4 psynth) Chenopodium cell cult 70

89

Remobilization (starch, lipid, and protein breakdown)
Amy3D, Amy3E α-amylase rice cell cults S, G, F, Mal 61, 180
α-amylase rice, cult embryo, and scutel

barley aleurone

S, G, F, 
endo extract
Na-butyrate

74, 187, 214

94
plastid starch phosphorylase Chenopodium cells, lvs G 91
phosphoglucose mutase Chenopodium cells, lvs G 91
isocitrate lyase [Icl] (glyox cycle) cucumber cotyledons

Chlorogonium cells
S, G, F, 2dG,
M + acet

50, 51
155

malate synth (glyox cycle) cucumber cotyledons S, G, F, 2dG,
M

50, 51

proteases maize root tips G 13
asparagine synthetase (N cycling) Arabidopsis shoot tissues S 95

Sucrose and mannitol metabolism (synthesis and breakdown)
acid invertase maize root tips [Ivr1] G, S, F, oth 86, 209, 210
S synth maize root tips [Sh1]

maize protoplasts [Sh1]
carrot, whole plant
Vicia seeds, cotyledons
Arabidopsis [ASus1]

S, G, F, oth
S
pruning
F, G
sink manip

85
104
179
57
106

SPS sugar beet rts, lvs S 60
Mtol dehydrogenase celery cell cult S, Mtol 133

Abbreviations: 2dG, 2-deoxy-glucose; acet, acetate; cult, culture; endo, endosperm; F, fructose; G, glucose;
Lhcb, light-harvesting chlorophyll-binding protein (also cab); lvs, leaves; M, mannose; Mal, maltose; Mtol,
mannitol; PEP, phosphoenolpyruvate; PPdikin, phosphodikinase (cytosolic); rts, roots; scutel, scutellum; Sh1,
Shrunken1; S, sucrose; SPS, sucrose phosphate synthase; trans expr, transient expression; synth, synthase.
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Carbohydrate Depletion and Sugar-Responsive Genes
Plant and microbial gene responses to carbohydrate depletion have important
similarities but dif fer as well. In both plants and microbes, sugar and acetate
effects favor uptake of preferred substrates requiring the least metabolic cost
and promote heterotrophic growth over photosynthesis when possible. How-

Table 2 “Feast” genes: enhanced by sugar abundance

Genes/enzymes (function) Evidence: plant, tissue Effectors tested Refs

Polysaccharide biosynthesis (starch and other)
AGPase [Sh2] (starch) Chenopodium cell cult + spinach,

transgenic potato lvs
potato/detached lvs in dark

91
92, 116
87 

starch phosphorylase potato tuber
potato/detached lvs in dark

S
S

171
87

starch synth [GBSS] potato/detached lvs in dark S, G, F 87
branching enzyme [BE] potato/detached lvs in dark

cassava stems and lvs
S, G, F
S, G, F

87
152

Storage proteins
sporamin, A & B types sweet potato/cult plts/stems

sweet potato/lvs and petiole
S
S, G, F
S, pgal a

56
65, 122

β-amylase (storage protein?) sweet potatoes and lvs
sweet potatoes and lvs

S, G, F
pgal a

122
127

patatin class I transgenic potato
promoter
potato tubers and lvs
transgenic potato lvs and tuber
potato tuber/transgenic tobacco
potato leaf and stem explants
potato leaf and stem explants
transgenic potato tubers

S
S
S
S, starch
S
S
S, Gln, dk
sol. sugs.

52
36, 143
78
99
202
202
131
117 

proteinase inhibitor II [Pin2] transgenic potato tubers
potato lvs/transgenic tobacco
detached potato lvs
transgenic tobacco

sol. sugs.
S, G, F, Mal
ABA, MeJA
S, G, F

117
70
131
78 

lipoxygenase (storage protein) soybean Lox-NR
soybean VspB
soybean Vsps

depodding
S, Mal
S, G, F, MeJA

53
149
107 

Pigments and defense
chalcone synth (pigment/path.) petunia in Arabidopsis, alfalfa

protoplasts, Camelia sinensis
S, G, F
p-coumar
sugars

193
101
183 

RT locus (pigment synth) petunia/petal, anther G + light 14 
dihydroflavonol-reductase ivy lvs and stems sugars 120
Mn-superoxide dismutase rubber tree/all tissues S 110 
hrp (pathology) Xanthomonas campestris S + Met 157 
chaperonin 60B (protein synth) Arabidopsis lvs S 215 

Respiration
PGAL-dehydrog. (GapC) cyto Arabidopsis lvs S 211
β-isopropylmalate dehydrog. potato, tomato, Arabidopsis S, AA 66 
apocytochrome 6 (co6) Chlorogonium cell cult 93 
PP-F-6-P phosphotransferase

  (cytosolic enzyme)
Chenopodium cell cult, tobacco,
and spinach lvs

G
G

92
92
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ever, in complex plant systems, carbohydrate-regulated genes also provide a
means for optimizing investment of C, N, P, etc among dif ferent plant parts
and processes. Localized expression of starvation-induced genes may also aid
survival of key cells and tissues under stress (84, 85).

In carbon-exporting or other autotrophic cells, photosynthetic genes are
typically upregulated by sugar depletion. These include genes for the primary
CO2 fixation enzymes of both C3 and C4 plants (18, 160, 161) and other genes
critical to photosynthesis (113, 160). Both nuclear (Table 1; 89) and plastid
genes (25, 89, 160, 161) are affected, though the latter may respond more
slowly to altered carbohydrate levels (25, 163). Enhanced expression results
largely from derepression of sugar and acetate controls on transcription (89),
though longevity of mRNA can also contribute to sugar modulation in vivo
(162). Photosynthetic genes are repressed most by acetate (160) and often more
strongly by hexoses than sucrose (69, 160, 161). Acetate effects are observed
in cotyledons and in unicellular algae (Table 1; 50, 51).

The physiological consequences of sugar-induced changes in gene expres-
sion are discussed further in the section on “I mplications at the Cell and
Organism Level.” Coordinated but often contrasting responses to sugar deple-
tion are also evident at the enzyme level (90, 153, 175, 194). Plastid proteins

Table 2 (Continued)

Genes/enzymes (function) Evidence: plant, tissue Effectors tested Refs

Sucrose metabolism
invertase maize root tips [Ivr2]

Chenopodium rubrum
carrot, whole plant

S, G, F
S, G, F, 6dG
manip.

87, 209
144
179 

S synth maize [Sus1]
rice embryos
Vicia faba cotyledons
potato tubers, lvs, stems
potato plants, throughout
Chenopodium cell cults

S, G, F
S, G, F
S
S
S
S, G, F

86
74
57
151
37, 38
46

SPS sugar beet petioles
transgenic potato

G
sol. sugs.

60
117 

Other
nitrate reductase Arabidopsis lvs light/dark

Arabidopsis plants light/dark
Chenopodium cells/spinach lvs

S, G, F
G

196
18
91 

SAM synth Lolium lvs S 208
ro/C gene of Ri plamid transgenic tobacco/phloem S 213
30-kD Rubisco-assoc. protein soybean lvs pod removal 171 

Abbreviations: 6dG, 6-deoxy-glucose; AA, amino acids; cult plts, cultured plants; F, fructose; G, glucose;
GapC, PGAL-dehydrogenase (cytoplasmic); Gln, glutamine; Glu, glutamate; lvs, leaves; Mal, maltose; MeJA,
methyl jasmonate; Met, methionine; p-coumar, p-coumaric acid; PGAL, glyceraldehyde-3-phosphate
dehydrogenase; pgal a., polygalacturonic acid; PP-F-6-P phosphotransferase, pyrophosphate:fructose-6-
phosphate-phototransferase; S, sucrose; SPS, sucrose phosphate synthase
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and enzymes can dif fer in their responses depending on whether they are
encoded by nuclear or plastid genes (10, 190, 194) and whether they are
involved in photosynthesis or other processes (91).

Genes for remobilization of sugars and other small molecules from polymers
and/or vacuoles are also induced in exporting cells by carbohydrate depletion. In
photosynthetic leaves, those genes associated with starch breakdown can be
upregulated by carbohydrate depletion and repressed by glucose (91). A similar
response is observed in source tissues of germinating monocot seeds, where
starch hydrolysis in endosperm provides the bulk of exported sugars (61, 74, 187,
214). In addition, carbohydrate depletion in cotyledons of germinating dicot
seeds upregulates genes for remobilization of lipid reserves via the glyoxylate
cycle (50, 51). β-amylase genes are not enhanced by carbohydrate depletion
(125, 127); however, their in vivo function remains unclear.

The extent of protein remobilization (and associated gene expression) can
vary markedly with the degree of carbohydrate depletion (33, 68, 173). Leaf
storage proteins are broken down under these conditions (53, 170, 173), though
typically nonphotosynthetic cells are involved (53). Starvation effects (see
below) occur only if  photosynthetic capacity is severely compromised.

In carbon-importing cells, transitions to net carbon export are favored by
“f amine-induced” changes in gene expression. This cellular altruism in higher
plants is distinct from responses of microbes and unicellular algae. Genes
related to carbohydrate, lipid, and protein remobilization (Table 2 and below),
amino acid synthesis (95), and sucrose formation [sucrose phosphate synthase
(SPS; 60, 81)] are upregulated. Responses of SPS genes to sugar availability
may be complex. In sugarbeet, a taproot-specific form of this enzyme is
upregulated and downregulated by glucose and sucrose, respectively (60),
whereas a spinach gene is regulated in synchrony with the sink-to-source
transition (81).

Starvation and carbon conservation responses at the level of gene expression
initially  affect genes related to reserve remobilization (see above) and respi-
ration (see below) that preserve structural constituents of the cell (12, 13, 68).
Prolonged stress may induce genes related to breakdown, shuttling, and scav-
enging of cellular resources (P Ramond, unpublished data). Detoxif ication of
nitrogenous compounds may be facilitated by upregulation of asparagine syn-
thase (68) and sucrose synthase (Table 1). These changes are accompanied by
sugar-repressible increases in activity of endoglycosidases [implicated in gly-
coprotein breakdown (100)], endopeptidases (49), and unidentif ied starvation
proteins (5, 200). Under extreme starvation, the activity of enzymes involved
in β-oxidation (although not a fully  operative glyoxylate cycle) increases and
may be associated with metabolism of membrane lipids (12, 13, 31, 68).
Specific subgroups of apparently immature mitochondria and their associated
proteins also disappear from starved cells under these conditions (23, 73).
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Starvation stress and transport sugars can also affect accumulation of osmo-
protectants. Upregulation of a mannitol dehydrogenase gene by carbohydrate
depletion allows use of this sugar alcohol as a carbohydrate source (133),
whereas sugar repression favors accumulation and salt tolerance (133, 185,
186). A starvation-tolerant class of genes for sucrose synthase and for invertase
is also induced (85, 86); these proteins are expressed in key tissues under stress
(84, 85) and at specific stages in development (209; see below).

Carbohydrate Abundance and Sugar-Responsive Genes

A large but specific set of genes is positively regulated by sugars. The majority
of identif ied genes that are induced by elevated sugar levels encode products
that help set capacity for carbon storage, utilization, and import. Other impor-
tant classes include defense genes, secondary product pathways, and storage
proteins.

In carbon-exporting and/or autotrophic cells, the transitions to import and
storage programs are typically initiated at elevated sugar levels. The decreased
expression of photosynthetic genes described above allows reallocation of the
C and N (otherwise utilized in photosynthetic proteins) to other processes more
advantageous under the prevailing carbohydrate environment. In this context,
the concurrent upregulation of genes for nitrate reductase and a putative SAM
synthase in leaves (205; Table 2) could facilitate amino acid synthesis and
turnover of other N sources. Such genes may also contribute to synthesis of
leaf storage proteins (Table 2; 170) and other signals including polyamines
that may enhance the positive effects of sugars (180). Other aspects of gene
expression related to storage and carbon use also change in Lolium leaves as
sugar levels rise (206).

Genes related to storage reserve synthesis can be upregulated by sugars.
These genes are similarly affected in both photosynthetic and nonphotosyn-
thetic organs (84, 122, 131, 188). These changes may be associated with
conversion of chloroplasts to either amyloplasts (154) or chromoplasts as sugar
levels rise (64).

Genes for sucrose metabolism can be upregulated in photosynthetic tissues
following manipulations that cause sugars to accumulate (151). These changes
often result in elevated starch levels (167, 168) especially in cells alongside
major veins (124).

In carbon-importing cells, genes for starch biosynthesis have received the
greatest attention. Those encoding ADPG-pyrophosphorylase (AGPase), a key
step in starch biosynthesis, are markedly sugar responsive in potato (87, 89,
116). AGPase expression is also strongly enhanced by sugars in transgenic
potato cell cultures (116) and in other species (175). Corresponding increases
in activity of the AGPase enzyme are not necessarily  observed but may occur
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more slowly (175). Starch synthase and branching enzyme are also induced
and/or expressed at elevated levels when sugars are plentiful (87, 152). Car-
bohydrate regulation of sucrose synthase genes is complex and not necessarily
directly related to starch synthesis. The Shrunken1 (Sh1) gene for sucrose
synthase in maize can directly affect synthesis of starch and/or cell wall
materials (20, 123, 124); however, a second gene, Sus1, responds more strongly
to elevated sugars (85; see section on Contrasting Response Classes Among
Genes for Sucrose Metabolism).

Genes encoding storage proteins were among the first sugar-responsive
genes identif ied. A gene for sporamin storage protein in sweet potatoes (56)
is upregulated in situ, and it is ectopically expressed in plantlets treated with
high sugars. The patatin storage protein genes of potato also respond positively
to high sugar levels (78, 99, 131, 202). An additional group of sugar-modulated
genes includes vegetative storage proteins, which are expressed at elevated
sugar levels in several species (29, 107, 149). Many of these proteins have
enzyme activity in addition to a storage function. The Vsp gene groups A and
B of tobacco encode proteins with phosphatase activity (149); a soybean
vegetative storage protein has lipoxygenase activity (53); the patatins are lipid
acyl hydrolases (52, 202); and the WIN and Pin-II storage protein genes of
Solanum spp. are proteinase inhibitors (70). Studies of sugar responsiveness
in these genes have revealed important interactions between carbohydrate
supply and other signals (e.g. N, P, auxin, etc).

A number of pigment and defense genes are positively modulated by
carbohydrates (77; Table 2). The products of these genes mediate plant
interactions with other organisms, either as pathogens, pollinators, or fruit
dispersal agents. Often these interactions involve enhanced carbon use by
the plant; however, effects on biosynthesis of pigments, proteins, and
chaperonins can be distinct.

Respiratory genes are affected to varying degrees by sugars (Table 2). Both
nuclear- and plastid-encoded genes can show positive responses, with the latter
upregulated through both mRNA abundance and gene copy number (93).
Mitochondrial ubiquinone mRNA is also strongly affected (B Collins, P Ray-
mond, R Brouquisse, CJ Pollock & JF Farrar, unpublished data), as are levels
of cytochrome oxidase and activity of fumarase (91). As in yeast, however,
carbohydrates do not globally upregulate respiratory genes. For example,
mRNA levels may remain constant for glycolytic genes [often used as controls
(89, 92)] even though other respiratory genes respond to elevated glucose levels
(91, 92; see Table 2).

Genes for sucrose metabolism can be strongly affected by high sugar levels
in importing as well as exporting cells. The complex carbohydrate regulation
of the invertases and sucrose synthase genes that control the two known paths
for sucrose breakdown is discussed in the following section.
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Contrasting Response Classes Among Genes for Sucrose
Metabolism

Genes for sucrose metabolism occupy a central position not only in carbon
flow but also in the production of alternate potential effectors of the sugar-
sensing system. This altered expression of genes in sucrose metabolism could
affect whole-plant adjustment to changes in carbohydrate supplies at several
levels. Shif ts in resource allocation are often directly correlated with activity
of the respective enzymes, and indirect effects on signaling systems could
further amplif y changes in expression of these genes as well as genes affecting
developmental programs. Collectively, these changes could also lead to
changes in plant form that fine-tune acclimation.

Sucrose metabolism is the first step in carbon use by the majority of im-
porting cells in plants (21, 115, 181). Two recently appreciated features of
sucrose metabolism are particularly interesting. First, the genes for invertase
as well as sucrose synthase are sugar-modulated (84, 144, 179, 209). Second,
isozyme forms of each enzyme show contrasting carbohydrate responses (84,
85, 209). (In each instance, one isozyme is upregulated while one or more
others are repressed.) Sugar-modulation of genes for both known paths for
sucrose metabolism provides a potential mechanism for coarse control of this
process.

The presence of isozyme forms with contrasting carbohydrate responsiveness
was an unexpected finding. Reciprocal expression was first observed for sucrose
synthases (85) and subsequently for invertases (209, 210). Initial studies of
sugar-modulated gene expression were perplexing because of contradictory
results. Sucrose synthase was reportedly both repressed (83, 104, 169) and
enhanced in the presence of abundant carbohydrate supplies (74, 151). The
reciprocal sugar responsiveness of genes encoding distinct isozymes is likely to
have been responsible (85). Dif ferentially responsive genes could also explain
the contrasting effects of light on expression of sucrose synthases of wheat (105).

The surprising similarity between dif ferential sugar-modulation of dif ferent
genes for invertases (209, 210) and sucrose synthases in maize indicates that
there are two sugar-response classes among genes for sucrose metabolism.
Both the Sh1 gene for sucrose synthase and the Ivr1 gene for invertase (210)
are expressed maximally when supplies of metabolizable sugars are limited
[e.g. ca 10 mM glucose (0.2% w/v)] (85, 209). Both types of mRNA persist
during carbohydrate starvation stress in root tips, and they are enhanced at key
sites and times during reproductive development (84, 85, 209, 210). In contrast,
the Sus1 gene for sucrose synthase and the Ivr2 gene for invertase both respond
positively to abundant carbohydrate supplies [e.g. ca 100 mM glucose (2.0%
w/v)] and are expressed in a broad range of importing tissues (209, 210). A
“f east”- responsive set of isozymes for both paths of sucrose breakdown could
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aid adjustment of import and metabolism relative to photosynthate availability .
The potential value of up- or downregulating sucrose utilization in balance
with its supply is consistent with the broad distribution of this isozyme form
among importing tissues. In contrast, the potential physiological signif icance
is less clear for the isozyme genes expressed when carbohydrate supplies are
limited. To date, little is known about dif ferences between properties of the
invertase isozymes, although the sucrose synthases appear to be enzymatically
similar (32). It is possible that more recent work showing phosphorylation of
this enzyme (63, 86, 159) may be related to dif ferences in properties of the
sucrose synthase isoforms (63).

Additional clues to the biological importance of sucrose synthase and inver-
tase isozymes whose genes are upregulated under “f amine” conditions may lie
in the altered protein localization and reproductive timing of expression. Under
starvation stress, sucrose synthase protein in maize root tips is localized to
epidermis and vascular strands while being markedly depleted from the cortex
(56a, 85). Cortical cells are often sacrif iced during various stresses, including
low oxygen, N, or P availability  (56a, 84, 108), whereas vascular and epidermal
tissues are preserved. Living epidermis appears to be essential for nutrient and
water uptake in many species and is very often associated with a hypodermis
(having endodermal-like functions) and a rhizosheath of soil particles bound to
the root surface by polysaccharide secretions [also sugar modulated in their
extent (114)] (132, 108). It is possible that import priority could be conferred on
essential cells and tissues during periods of limited resources by localized
upregulation of special isoforms of sucrose metabolizing enzymes (84, 85). This
would be consistent with upregulation of the same starvation-tolerant isoforms
in specific reproductive tissues and in their additional localization in apices of
roots and shoots preserved at the expense of other tissues in a starving plant (6).
Our current knowledge of the Sh1 sucrose synthase and Ivr1 invertases of maize
is consistent with this hypothesis (86, 209).

IMPLICATIONS AT THE CELL AND ORGANISM LEVEL

Long-Term Metabolic Changes
The relatively slow kinetics of the carbohydrate-induced changes in gene
expression (85, 175) and enzyme activity (84, 86) are consistent with the time
frame often required for source/sink adjustments at the whole-plant level (41).
The physiological changes parallel the altered expression patterns of individual
genes. Photosynthesis and C-conservation are generally enhanced when sugar
supplies are limited, and utilization usually predominates when sugars are
abundant.

Changes in photosynthetic processes resulting from sugar-modulated gene
expression generally occur over an extended time period (ca 3–7 days) (84,
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86, 175) and may amplif y shorter-term effects of direct metabolic control (35,
62). Altered transcript abundance can occur within a few hours or less in some
systems (144, 161), although initial changes are often not evident until ca
12–24 h and progress slowly thereafter. Consistent with this time scale, early
work by Geiger (41) showed that changes in photosynthetic capacity in re-
sponse to altered source-sink balance takes 3–4 days. Also, as plants acclimate
to elevated CO2, photosynthetic rates decline over a period of days after an
initial increase (27), possibly because of the repressive effects of accumulated
sugars in leaves (194).

Invertase activity in leaves may indirectly affect repression of photosynthetic
genes by accumulated sugars because hexoses may affect the sugar-sensing
system more directly than sucrose (69, 160, 161; see section on Carbohydrate-
Sensing Systems). Hexoses in particular have been implicated in long-term
repression of photosynthetic genes (59, 175). Species with high levels of leaf
invertase show a greater degree of photosynthetic inhibition in instances of
reduced sucrose export (47). This effect is substantiated in transgenic invertase
overexpressors (30, 58, 166, 168, 177, 198), where sucrose export from mature
leaves is inhibited and hexose production enhanced. Pollock et al (136) also
found that elevated leaf sucrose had little inhibitory effect on photosynthesis
while fructans were being actively synthesized and stored in vacuoles (presum-
ably removing hexoses from the cytosol). Long-term influences of hexoses on
photosynthesis are likely to involve other factors as well (35, 42, 62, 176). Krapp
et al (89) suggested that, as in yeast, hexose metabolism may be required for
repressive effects of sugars on gene expression; they found an imperfect
correlation between hexose levels and photosynthetic repression.

Leaf senescence may also be enhanced by long-term hexose effects on
gene expression. In this context it is interesting that invertase activity is
elevated during aging (135). Hexoses in particular may favor expression of
genes involved in remobilization of photosynthetic machinery and altered
pigment synthesis (Tables 1 and 2). Acetate effects are still more pronounced
(160), which indicates that lipid breakdown and mobilization may accelerate
senescence. The putative advantage of sugar repression of photosynthetic
genes is that valuable resources need not be committed to this process if
carbohydrate supplies are already sufficient.

Pigment changes and chloroplast-to-chromoplast conversions during fruit
ripening and senescence may be affected by carbohydrate-sensitive genes (201).
In ivy, sugar-sensitive gene expression has been directly related to induction of
enzyme activity leading to pigment accumulation (119, 120). In citrus peel,
sugars mediate interconversions between chloroplasts and chromoplasts (64).
Regreening occurs in late-ripening oranges as peel sugar levels drop in spring.
Rising sugar levels are consistently associated with the chloroplast-to-chro-
moplast conversion in autumn. Sugars can also stimulate these changes in
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chlorophyll, carotenoid, and plastid characters in vitro (48). Chloroplast-to-chro-
moplast conversions are also enhanced by the induction of invertase at low
temperature in citrus (138). Many of the nuclear-encoded plastid genes are also
readily  responsive to sugar levels (Tables 1 and 2), whereas chloroplast genes
appear to be less so (194). As noted above, however, the responsiveness of
chloroplast genes to acetate suggests that this metabolite could be important in
plastid conversions.

Changes in storage processes are closely related to carbohydrate-responsive
gene expression. Sugar effects on storage organ formation are discussed below
(see section on Interaction with Developmental and Environmental Signals).
In addition, most instances of enhanced gene expression cited in Table 2 are
accompanied by respective increases in enzyme activity and storage of carbo-
hydrate and/or proteins (e.g. 146, 197). Further, sugar effects on an α-amylase
gene family  and on sucrose synthase correlate with the balance between en-
dosperm remobilization and the demands of the growing seedling (188).

Respiratory changes related to sugar-modulated gene expression are less
clear. The hypothesis for “coarse control” described by Farrar & Williams (34)
indicates that long-term respiratory responses follow extended changes in
carbohydrate availability  and probably require altered gene expression. Al-
though evidence supports this view, the relationship between carbohydrates
and gene expression is complex, and aspects of the story remain unresolved.
Respiration typically rises in response to increasing levels of sugars (8, 34, 96,
109), and it decreases with starvation (12, 68, 140)—as do expression levels
of many genes related to respiratory processes (Table 2). Concurrent increases
in levels of key mRNAs and of associated respiratory activity have been
observed as sugar content rises in maturing leaves of transgenic plants over-
expressing invertase (175). Similar correlations have been made in several
species (89, 93). Kroymann et al (93) suggested coordination through a signal
related to cellular energy charge. The ATP/ADP ratio rises along with respi-
ration and associated transcript levels (89). However, the evidence gathered
thus far does not necessarily  support adenylate charge as a direct signal for
carbohydrate-responsive genes (175, 161; see section on Key Metabolites as
Direct Signals). Other issues not yet fully  resolved include the role of changes
in organelle number (140) and genome copy number (93), the importance of
the alternate oxidase (96), signif icance of Pi and adenylates to gene expression
(161, 175), and the potential impact of acetate on the carbohydrate signaling.

Carbohydrate-Responsive Genes, Assimilate Partitioning, and
Development
The ultimate signif icance of sugar-modulated gene expression may be induc-
tion of changes in whole-plant morphology. Taken together, the trends in gene
expression, subsequent metabolic changes, and shif ts in resource allocation
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are consistent with this suggestion. Sugar modulation of developmental genes
is implied by responses such as potato tuber induction (165); however, the
specific genes involved have not been identif ied. The pronounced interactions
between carbohydrate levels and plant growth regulators (especially auxin/
sugar antagonisms) and other essential nutrients such as N or P suggest that
sugars may affect development at the cell, organ, and whole-plant levels. The
type of carbohydrate supplied to cells and callus cultures can also affect
morphological change not attributable to osmotic effects.

Figure 1 summarizes the developmental trends implied by the gene expres-
sion changes known to occur in carbon-importing and -exporting tissues under
feast and famine conditions (see Figure 1). A number of studies support the
notion that C-availability  can affect C-allocation through altered gene expres-
sion (see discussion on partition in section on Contrasting Response Classes
Among Genes for Sucrose Metabolism). This in turn can affect partitioning
between root and shoot structures (43, 134, 167, 179, 204). Other seemingly
contradictory results obtained when dif ferent methods are used to manipulate
sugar availability  might also be inter- preted within this simplif ied framework.
Both root and shoot growth are inhibited in transgenic plants with excess
invertase, presumably because trans- location to the root system is disrupted
(175) and high hexose levels simultaneously repress photosynthetic genes in
leaves. In contrast, shoot growth may be indirectly enhanced when sugars are
supplied to whole plants via the root system (56, 88), if  increased root growth
leads to increased capacity for cytokinin synthesis, which in turn may stimulate
shoot growth and photosynthetic processes (112).

Carbohydrate-induced changes in vegetative morphology often involve an
altered balance of growth regulators and mineral nutrients (130, 207). Sugars
can repress auxin-mediated processes including apical dominance and upright
stem growth (negative geotropism) resulting in more spreading, procumbent
growth forms (203). Expression of genes now known to be sugar responsive
may also have a role in gravitropism (75, 76). In addition, sugar induction of
storage organs in potato and sweet potato can be distinguished from regulation
of the genes associated with storage processes per se. Although some of the
latter processes are coordinately regulated (197), the morphological program
remains separately sugar responsive (117).

Cell dif ferentiation and the cell cycle can also be strongly affected by sugar
availability . Development of tracheid vs phloem cells can be controlled by
sugar/auxin balance (39), and other effects of specific sugars on dif ferentiation
have been reevaluated in cultured cells (191). The cell cycle within a given
tissue can be synchronized by withholding and resupplying sugars (200). In
addition, cell divisions can be induced in nongrowing buds of sunflower by
elevated sugar levels (2).
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Figure 1 The impact of sugar-modulated gene expression on overall activity and resource
allocation is diagrammed figuratively at the whole-plant level (changes do not necessarily represent
actual morphological changes per se). “Feast” and “Famine” genes are those upregulated and
downregulated under conditions of limited and abundant carbohydrate supplies, respectively, in
either exporting (upper half) or importing tissues (lower half). Processes favored by these changes
in gene expression are designated with a (+), and processes that are diminished are designated with
a (−).
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Sugar-induced changes to reproductive programs may be closely related to
effects on the cell cycle. Sugar pulses to apical meristems can initiate synchro-
nous cell divisions that precede other aspects of floral meristem dif ferentiation
(7, 97). High levels of apical sugars can also amplif y photoperiod effects on
floral evocation in Lolium temulentum and replace it fully  in Sinapis alba (80,
137). In the latter case, concomitant with increased apical sugar levels, in-
creases in invertase are observed in the apical meristem (137). Some invertase
genes are sugar-regulated (84, 144, 210) and have the potential to enhance
sugar perception by hexose sensing systems (see below). In addition, sugars
supplied through roots can suppress phenotypes of early- and late-flowering
mutants in dark-grown Arabidopsis plants (J Salinas, personal communica-
tion).

Interactions with Developmental and Environmental Signals

Effects of carbohydrate availability  on fruit and seed set may mediate
responses to certain environmental stresses. Studies of stress-induced kernel
abortion in maize show that exogenous carbohydrate supply (11) and short-
term reserves in young ovules (141) are crucial to kernel set in conditions of
low water (216) or high temperature stress (17). Sugar-feeding studies have
implicated the final phase of import and use of these substrates within the
developing ovule as critical (11, 17; J Boyer, unpublished data). Effective
sugar utilization in vivo is strongly dependent on the activity of sucrose
metabolizing enzymes (21, 111, 115, 181) that are encoded by sugar-respon-
sive genes (Tables 1 and 2; 85, 209). Soluble invertase occupies a conspicuous
position during the earliest phases of fruit and seed set (181, 209), and that
activity is selectively affected by abortion-inducing stresses such as low water
potential (216). Although the evidence is thus far largely correlative, the sugar
responsiveness of soluble invertase genes could provide a mechanism for
integrating and transducing information on the C-resources available to the
fertilized ovule.

Developmental signals mediated by growth regulators can have marked
effects on carbohydrate-modulated genes. The nature of this interface is still
poorly defined. However, work by Mullet and coworkers (29) indicates that
one of two dif ferent sugar-responsive promotors they studied is sensitive to
auxin/sugar antagonism. Similar response elements could explain the repres-
sion of sugar responses (179) by auxin analogs in cell cultures (178) and auxin
modif ication of sugar effects on invertase expression at the whole-plant level
(45, 148, 203). Gibberellin interaction with sugar signaling is apparent in
germinating grain seeds (187, 188) and stolen starch metabolism (4). Cytokinin
and sugar signals overlap in transcriptional regulation of nitrate reductase (18,
196), invertase (209), and other genes (26). They can also affect respiration
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(121), the cell cycle (67, 98), auxin antagonism (112), kernel abortion (17,
71), and an array of morphological changes (112).

Interactions between environmental signals and sugar-responsive genes do
not necessarily  involve developmental programs. Elevated sugar supply, os-
motic stress, and pathogen invasion all upregulate the mtd gene for mannitol
metabolism and enhance synthesis of this osmotic protectant (133). Mannitol
in turn imparts enhanced salt tolerance in transgenic plants (184, 185). Osmotic
adjustment can also be affected by sugar-regulation of invertases (212), which
could in turn sensitize cells to sugar supplies by the elevation of hexoses (161,
177). Similar to mtd and some other sugar-responsive genes (70), invertase is
induced by wounding (178).

Recent progress has also been made in defining the interface between
sugar-sensing systems and the transduction of various light signals (19). Sheen
pointed out (161) that the carbohydrate-repression of photosynthetic genes
supersedes many of the light effects. Chory (19) proposed that light signals
are partly filtered through a sugar-regulated segment of the transduction path-
way. Parks & Hangarter (128) also found that blue light effects can dif fer
depending on tissue sugar status. The effects of sugars on photoperiodic re-
sponses were discussed above. In addition, high irradiance responses (HIR)
such as anthocyanin biosynthesis in fruit skins overlap sugar effects.

Influence of essential mineral nutrients such as N (24) and P (186) on gene
expression and morphology is often strongly linked to carbohydrate status
(130). Several possible avenues for C/N interactions or P effects on C-signaling
have thus far tested negative (175). Sadka et al (149), however, found that P
availability  altered sugar-regulated transcription of a carbohydrate-sensitive
promoter element.

CARBOHYDRATE-SENSING SYSTEMS

Several lines of evidence indicate that sugar effects on gene expression involve
specific signaling mechanisms and do not simply result from their nonspecific
effects as substrates for plant growth. First, the effects of sugars on gene
expression are highly selective; many genes are not affected. Second, sugars
can repress as well as activate responsive genes. Third, in many cases, sugar-
modulated gene expression can be mimicked by nonmetabolizable sugar ana-
logs (69, 160, 161) and altered by selective metabolic perturbations (102, 161,
175, 182). Finally, sugars are well-known effectors of gene expression in
microbes.

Microbial sugar-sensing mechanisms are an important resource for devel-
opment of testable hypotheses in plants (50, 51, 69, 160). However, the emerg-
ing picture of sugar signaling in plants highlights important dif ferences (40,
150, 192) and intriguing similarities with microbes.
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Hexose Phosphorylation and Protein Kinase Cascades

An important hypothesis for sugar sensing stems from the evidence that phos-
phorylation of hexoses by hexokinase is a well-documented primary source of
sugar signaling in yeast (161). The hexokinase itself is proposed to have a dual
function as a protein kinase (40) sensitive to the flux of sugars entering
metabolism. Because the rate of hexose phosphorylation is more important
than the steady-state level of hexose-P produced in yeast, the concentration of
hexokinase enzyme-product complex is proposed to be directly involved in
signaling carbon flux through the pathway.

As in yeast, sugar concentrations per se are not necessarily  correlated with
changes in plant gene expression. Analysis of maize mutants with high-sugar
kernels (44) and transgenic, sugar-storing potatoes (117) showed little or no
change in expression of genes otherwise affected by sugars. Although
compartmentalization of sugars was not addressed in these studies, the results
may be interpreted as evidence that carbon flux rather than steady-state sugar
level is the critical signal. The data that support a corresponding role for
hexokinases in plants center largely on responses to sugars (2-deoxyglucose
and mannose) that are rapidly phosphorylated by hexokinases but that do not
readily  undergo subsequent metabolism. Positive responses to these sugars
have now been observed in several plants (50, 51, 69, 160, 161, 175). In at
least one study, the effects of nonmetabolizable sugars were shown to be
blocked by addition of mannoheptulose, an inhibitor of hexokinase (69). By
analogy to yeast, these results are interpreted as favoring flux through the
hexokinase reaction as the inductive signal (50, 51, 69, 160). Other associated
perturbations have not been fully  excluded, although changes in Pi levels
appear to have little effect (175).

If the hexokinase hypothesis remains viable in plants, the wide variation in
specificity of plant hexokinases for glucose as opposed to fructose (156) may
add a fascinating layer of complexity to the regulatory scenario in plants.
Recent data from yeast indicate that glucokinases do not have the same sugar-
sensing impact as the hexokinases (145).

Extensive studies in yeast have also identif ied downstream components of
a protein kinase cascade involved in transmitting signals to the nucleus (40).
Putative homologs of the yeast snf1 gene have been identif ied in rye (RKIN1)
(1), tobacco (NPK5) (3, 118), and barley (a multigene family) (54). Naka-
mura and coworkers have shown that calcium levels (125) and a calcium-
dependent protein kinase (CDPK) (126) may be involved in sugar induction
of sporamin and β-amylase genes in transgenic tobacco. The latter finding
suggests that sugar sensing in plants may be distinct from mechanisms in
other systems because CDPKs appear to be lacking in other organisms (142).
The localization of this CDPK on the plasmamembrane of plant cells suggest
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a possible association with the sites of membrane transfer. Other recently
isolated plant genes are similar to the glucose-regulated proteins (GRP)
involved in secretion and ER function in mammals (28, 164). Putative
sugar-sensing-related DNA binding proteins have been isolated from several
plants (65, 78, 103), but as yet they have no clear relationship to components
of signal transduction pathways in other organisms. The functions of these
genes are under study.

Plasmamembrane Transfer

In microbes, transfer of sugars across the cell membrane is critical for sugar
sensing and may be closely coupled to hexokinase action (150). In plants,
the role of membrane transport has been tested using sugar analogs that are
nonmetabolizable and nonphosphorylatable (as distinct from the analogs used
to implicate hexokinases) but actively taken up by plant cells. Data from W
Frommer (unpublished) and Roitsch et al (144) suggest that transfer across
the plasmamembrane alone (or the configuration of the sugar analog per se)
can initiate a signal. The studies of Jang & Sheen (69) indicate that transfer
across the membrane was necessary but not sufficient to initiate a response.
In plants, a direct involvement of membrane transport has the added impli -
cation that sugars entering the cell via plasmodesmata (symplastic transfer)
might be perceived dif ferently from sugars taken up from the apoplast (see
Figure 2).

Depending on the tissue, sugars may enter a plant cell via any of three routes:
(a) through plasmodesmata (symplastic transfer), (b) across the plasmamem-
brane as sucrose (from the apoplast), and/or (c) across the plasmamembrane as
hexoses (again from the apoplast). As illustrated in Figure 2, each path has the
potential to transmit dif ferent signals to a sugar-sensing mechanism. If plasma-
membrane transfer is directly involved in signaling, then hexose uptake from the
apoplast would potentially exert a greater effect per unit C than sucrose. Sucrose
arriving via plasmodesmatal connections would not exert a similar membrane
signal, although plasmodesmata might have an as yet undefined role in sugar
sensing. Preliminary evidence indicates that altered photosynthate availability
may affect size exclusion limits in plasmodesmata and promote pathway switch-
ing (i.e. extent of apoplastic vs symplastic transfer) (129, 147).

The alternative pathways by which sugars enter cellular metabolism may
also impact sugar-sensing mechanisms (Figure 3). Hydrolysis of sucrose by
invertase generates twice as much substrate for a hexokinase-based sensor
as does sucrose synthase. Sucrose synthase, on the other hand, generates
UDPG, which may feed into other signaling pathways. Vacuolar compart-
mentalization and hydrolysis by invertase may affect the timing of hexose-
signaling events.
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Figure 2 Potential differences in metabolic signatures of sugars entering plant cells and their
relevance to the carbohydrate-sensing system. Three different physical paths of sucrose import are
shown, with potential signals from plasmodesmata identified with diamonds and dashed lines.
Within importing cells, potential input into the hexokinase aspect of the signaling system is
designated by FK or GK. Differences in possible metabolic signatures depending on the entry path
and initial sucrose cleavage reaction are shown in dashed boxes at the far right.
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Figure 3 Potential points of signal input into the carbohydrate-sensing system of plants. A
simplified path of C-flow is shown at the left with corresponding sites of signal input at the right.
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Key Metabolites as Direct Signals

A second source of hypotheses for sugar signaling has come from analogies
to pathways for regulation of metabolism (175). The possibility  that the same
metabolites could mediate regulation of both metabolism and genes in these
pathways would provide an attractive mechanism for coordinating rapid
metabolic changes with longer-term adjustments in gene expression (34, 134,
175). However, key metabolites such as F-2,6-BP, sugar-P, adenylates, and
the Pi/PPi ratio, which collectively regulate carbohydrate metabolism, appear
to have little or no direct involvement in sugar regulation of gene expression
in the systems studied thus far (161, 175). Levels of F-2,6-BP have been
altered using inhibitors and in transgenic plants expressing an antisense gene
for PPi-dependent phosphofructokinase without affecting carbohydrate-re-
sponsive genes (175; A Krapp and M Stitt, unpublished data). Likewise,
various manipulations of Pi levels altered metabolism in predictable ways
but did not change expression of sugar-modulated genes (175). Introduction
of various phosphorylated sugars, adenylated sugars, and ATP into cells by
electroporation failed to affect sugar-responsive genes (161).

Although sugar levels can vary widely in plants, maintenance of “energy
homeostasis” is one proposed function of carbohydrate-regulated gene expres-
sion (69). The search for a link between respiratory metabolism and gene
expression continues. One possible link to a mitochondrial function involves
its role as a calcium reservoir sensitive to changes in respiratory substrates
(72). Changes in redox potential are also a possibility , as observed for chlo-
roplast mRNAs (28a). Adenylate balance may also be involved through an
influence on a hexokinase-based sensing mechanism. In this respect, it seems
not widely appreciated that the concentration of enzyme-product complex will
be directly proportional to the net forward flux through the reaction only under
initial velocity conditions, and these conditions are not likely to apply in vivo.
Nearer to equilibrium, the intermediate enzyme complexes will be affected by
concentrations of all substrates and products including hexose, hexose-P, ADP,
and ATP. It might be more accurate to view yeast hexokinase as a sensor of
some ratio of these metabolites rather than flux per se.

The profound effects of acetate on yeast and algal cultures are well known
(9, 93, 172), yet the signif icance of this metabolite to higher plants has been
explored only recently in leaf protoplasts (160) and intact cotyledons (50, 51).
Acetate appears to be the strongest input into the carbohydrate-sensing system
of maize leaf protoplasts (160). It is not clear whether there are points of
overlap between this signal and sugar inputs. Signal initiation from these two
metabolites appears to occur dif ferently. In this context, it is also intriguing
that lipid acyl hydrolases have been recruited as carbohydrate-responsive stor-
age proteins in potato (52, 202).
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CLOSING COMMENTS

In multicellular organisms, carbohydrate-responsive gene expression acquires a
functional signif icance beyond that observed in microorganisms. As in yeast and
bacteria, specific groups of genes show dramatically dif ferent responses to
changes in the carbohydrate environment and include both up- and downregula-
tion of gene expression. In multicellular structures, however, individual cells
respond to changes in the internal carbohydrate environment of the organism,
thus allowing coordinated long-term adjustments for the benefit of the whole.

Plants in particular appear to have successfully  employed this mechanism
for meeting the adaptive demands of their sessile existence. The sites, timing,
and extent of sugar-modulated gene expression described here indicate that
these processes may contribute to the dynamic allocation of carbon resources
and the continuous adaptive adjustment of form so characteristic of multicell-
ular plants. Sugars in vascular plants are thus long-distance messengers of
whole-organism carbohydrate status as well as substrates for both cellular
metabolism and local carbohydrate-sensing systems. Although the primary
source of carbohydrate signals is currently unclear, hexokinase action and
acetate levels remain a common theme shared by mammalian and microor-
ganism sensing systems. The pathways for transduction of sugar signals over-
lap with other environmental and developmental signals affecting gene ex-
pression.
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