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The nucleolus, for decades considered a ribosome factory and
site for ribosomal RNA synthesis and processing, has recently
acquired new fame. Analyses of proteins important for cell-
cycle regulation have shown that this organelle is used to
sequester proteins, thereby inhibiting their activity.
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Abbreviations
APC anaphase promoting complex
CDK cyclin-dependent kinase
SCF Skp1–cullin–F-box protein

Introduction
Because the nucleolus is easily visualized by light
microscopy, it was one of the first intracellular structures
described [1,2]. It occupies a considerable portion of the
nucleus, but its size varies greatly depending on the
species, cell type and physiological state. In the 1940s
cytologists learned that the nucleolus contains RNA and
proteins [3]. In the1960s it was determined to be a ‘ribo-
some factory’ [3]. In the 1990s it is considered ‘the
plurifunctional nucleolus’, because this organelle was
found to participate in the biosynthesis and processing of
RNA components of ribo-protein complexes [4]. How will
it be portrayed in this new millennium? Recent studies
regarding proteins involved in eukaryotic cell-cycle regula-
tion suggest that the nucleolus might function as a ‘prison’.
Sequestration in the nucleolus prevents proteins from
reaching their targets in other regions of the cell.

The eukaryotic cell cycle can be viewed as an irreversible
reiteration of a precisely timed sequence of events: G1,
S phase, G2 and mitosis. During S phase, the genetic mate-
rial is duplicated and, after a rest phase (G2), it is
segregated equally between the two daughter cells during
mitosis. Cells then exit from mitosis and enter another
resting phase, G1. Surveillance mechanisms, also known as
checkpoints, ensure that cells do not progress through the
cell cycle when defects occur [5]. Checkpoints sense intra-
cellular stresses such as DNA damage and mitotic-spindle
defects and halt cell-cycle progression until the damage is
repaired or, in higher eukaryotes, induce apoptosis. 

Work over the past twenty years has shown that cyclin-
dependent kinases (CDKs) and ubiquitin-dependent
degradation of key cell-cycle regulators promote cell-cycle
transitions. CDKs associated with different cyclins trigger

entry into the cell cycle, S phase and mitosis [6]. A spe-
cialized ubiquitin-dependent proteolysis complex, called
the SCF-dependent proteolysis machinery (SCF for
Skp1–Cullin-F–box protein) also regulates entry into the
cell cycle by degradation of CDK inhibitors [7–13]. Sister-
chromatid separation is mediated by another
ubiquitin-dependent proteolysis complex, the APC-
dependent proteolysis machinery (APC for anaphase
promoting complex), that degrades inhibitors of this
process [14–17]. By degrading the regulatory cyclin sub-
unit of CDKs the APC-dependent proteolysis machinery
also participates in promoting the final cell-cycle transi-
tion: exit from mitosis [14–16,18]. 

In the last year, three cell-cycle regulators have been iden-
tified whose activity is regulated by sequestration in the
nucleolus. Cdc14, a protein phosphatase critical for pro-
moting exit from mitosis [19•,20•], is kept inactive in the
nucleolus until the onset of anaphase, thereby preventing
the premature onset of mitotic exit [21••–23••]. Mdm2, an
inhibitor of the tumor suppressor protein p53 (p53 induces
cell cycle arrest in response to DNA damage), is
sequestered in the nucleolus in response to activation of
the oncoprotein Myc or replicative senescence, allowing
p53 to become active [24••,25••]. Pch2, a protein required
for halting meiotic cell-cycle progression in response to
recombination and chromosome synapsis defects, also
localizes to the nucleolus [26••], suggesting a possible role
for nucleolar proteins and the nucleolus in checkpoint sig-
naling. The finding that Cdc14, Mdm2 and Pch2 are
sequestered in the nucleolus points to a novel role for this
organelle in regulating the activity of cell-cycle regulators
which will be the focus of this review. 

The nucleolus and regulation of Cdc14
Exit from mitosis is ultimately triggered by inactivation of
the CDKs that promote entry into mitosis [19•,20•]. In the
budding yeast Saccharomyces cerevisiae, the phosphatase
Cdc14 plays a critical role in promoting inactivation of
mitotic kinases. By dephosphorylating an activator
(Cdh1/Hct1) of the APC, Cdc14 induces degradation of
these cyclins and thus inactivation of mitotic kinases
[19•,20•,27]. Cdc14 also promotes accumulation of an
inhibitor of mitotic kinases, Sic1, further ensuring that
these kinases are inactivated at the end of mitosis [19•].

Immunolocalization studies revealed that Cdc14 is local-
ized in the nucleolus during G1, S phase, G2 and
metaphase. During anaphase Cdc14 spreads to the nucle-
us and, to some extent, the cytoplasm, where it
dephosphorylates its targets. Biochemical purification of
Cdc14-associated factors and a two-hybrid screen identi-
fied the nucleolar protein Cfi1/Net1 as the protein
responsible for anchoring Cdc14 in the nucleolus
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[21••–23••]. Cfi1/Net1 directly binds to rDNA, a DNA
region encoding ribosomal RNAs, and anchors a number of
proteins, including Cdc14 and Sir2, a protein involved in
gene silencing [22••]. The regions in Cdc14 and Cfi1/Net1
responsible for nucleolar localization are not known.

The importance of sequestration of Cdc14 by Cfi1/Net1
in the nucleolus was revealed by the phenotypic analysis
of cells lacking CFI1/NET1. In such cells, Cdc14 was pre-
sent in the nucleus and cytoplasm throughout the cell
cycle which causes cells to exit mitosis prematurely
[21••,23••]. These findings led to the idea that Cfi1/Net1
sequesters Cdc14 in the nucleolus until the onset of
anaphase, thereby preventing it from becoming active
(Figure 1). In addition to inhibiting Cdc14 by sequestra-
tion, Cfi1/Net1 also appears to be a catalytic inhibitor of
Cdc14 [21••]. How Cdc14 is liberated from Cfi1/Net1’s
deadly embrace during anaphase is a critical question that
remains to be addressed. Cfi1/Net1 is a phosphoprotein,
raising the possibility that phosphorylation is important
for regulating the association between Cdc14 and
Cfi1/Net1. Supporting this idea is the finding that release
of Cdc14 from the nucleolus is controlled by a signal
transduction pathway termed the mitotic exit pathway
[28], which comprises at least four protein kinases.
Clearly, the next challenge will be to determine whether
and how phosphorylation affects the association between
Cfi1/Net1 and Cdc14 and which protein kinase is respon-
sible for phosphorylating Cfi1/Net1. 

The nucleolus and regulation of Mdm2
In response to DNA damage a surveillance mechanism,
known as the DNA damage checkpoint pathway, causes
cells to arrest either in the G1 or G2 stage of the cell cycle
[29]. In mammalian cells the p53 protein is a key compo-
nent of the DNA damage checkpoint [5]. In response to
DNA damage (and also other cellular stresses) p53 is tran-
siently stabilized in the nucleus, where it becomes active
as a transcription factor for genes that bring about cell-
cycle arrest or apoptosis [30–33].

p53 protein levels and activity are under tight control. The
oncogene MDM2, which itself is transcriptionally activated
by p53, plays a pivotal role in regulating p53 protein levels
and activity (Figure 2). Mdm2 is an inhibitor of p53, pre-
venting its activity via at least two distinct mechanisms.
First, Mdm2 binds to p53, thereby blocking its activity as
a transcription factor [34,35]. Second, Mdm2 promotes p53
degradation by enhancing its export from the nucleus into
the cytoplasm [36,37], and it may also act as a ubiquitin-
protein ligase in the degradation of p53 [38]. Recently, it
has been shown that in response to oncogenic signals the
oncoprotein p19Arf stabilizes p53 [39•–42•]. In contrast to
p53 stabilization brought about by γ-irradiation, p19Arf-
induced stabilization of p53 is not due to phosphorylation
of p53. Instead, p19Arf sequesters Mdm2 in the nucleolus,
thereby preventing it from exporting p53 into the cyto-
plasm where it is degraded [24••,25••].

In murine cells p19Arf appears to exclusively localize to the
nucleolus [24••,25••], which requires the carboxy-terminal
region of p19Arf [24••]. Interestingly, overexpression of
p19Arf leads to the recruitment of Mdm2, which is normal-
ly found in the nucleus and cytoplasm, into the nucleolus.
p19Arf-dependent sequestration of Mdm2 was also
observed in response to activation of the Myc oncogene
and in cells undergoing replicative senescence [24••,25••].
The biological relevance of p19Arf-dependent sequestra-
tion of Mdm2 in the nucleolus was revealed by the analysis
of a p19Arf mutant lacking the nucleolar localization
sequence, a 106 amino acid region located in the carboxyl-
terminal portion of the protein. This mutant is able to bind
Mdm2, yet is unable to induce p53 stabilization and cell-
cycle arrest, indicating that sequestration of Mdm2 by
p19Arf in the nucleolus inhibits Mdm2’s role in regulating
p53 turnover [24••]. 

Analysis of the shuttling of Mdm2 between the nucleus
and cytoplasm in heterokaryons showed that the longer it
continued, the more Mdm2 protein localized with p19Arf in
the nucleolus [25••]. This finding together with the obser-
vation that p19Arf is found exclusively in the nucleolus,
suggests that Mdm2 moves from the nucleoplasm into the
nucleolus, where it is sequestered by p19Arf [25••]. It rais-
es the interesting possibility that Mdm2 is exported into
the cytoplasm through the nucleolus. In this regard it is
interesting to note that Mdm2’s nuclear export signal is
similar to that of TFIIIA, a protein that mediates nuclear
export of the 5S rRNA [43,44]. Furthermore, Mdm2 binds
to the ribosomal protein L5 and to the 5S rRNA and RNA
sequences found in the 28S RNA of the large ribosomal
subunit [37,45,46]. 

Whether sequestration of Mdm2 by p19Arf as a means of
inhibiting Mdm2 function is conserved among mammals is
unclear. In human cell lines, p19Arf inhibits Mdm2-mediat-
ed nuclear export of p53 but not by sequestering Mdm2 in

Figure 1

Localization of phosphatase Cdc14 during the cell cycle. During G1,
S phase and early mitosis, Cdc14 is sequestered in the nucleolus by
Cfi1/Net1. After nuclear division has commenced, Cdc14 spreads into
the nucleus and cytoplasm. It then dephosphorylates Cdh1 and Sic1
(not shown), thereby promoting the inactivation of mitotic kinases
leading to exit from mitosis. 
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the nucleolus [47•]. High levels of Mdm2 cause relocaliza-
tion of p19Arf from the nucleolus into the nucleoplasm
where it forms nuclear bodies with Mdm2 and p53 [47•].
Thus, it appears that although Mdm2 sequestration in the
nucleolus is important in murine cells for inhibition of
Mdm2 activity, it is dispensable in human cells. However,
we cannot exclude the possibility that differences in
experimental conditions, such as the level of expression of
different factors, account for the differences in the experi-
mental outcome.

The role of the nucleolus in regulation of the
pachytene checkpoint
Meiosis is a specialized cell cycle in which a single S phase
is followed by two consecutive nuclear divisions [48,49].
During prophase of the first meiotic division homologous
chromosomes undergo genetic recombination and synap-
sis. In both yeast and mammals mutants defective in
recombination or formation of the synaptonemal complex,
a proteinaceous structure responsible for synapsis, arrest in
pachytene due to activation of the pachytene check-
point [50–56].

A hunt for mutants defective in cell-cycle arrest in response
to defects in synapsis in the budding yeast S. cerevisiae iden-
tified a meiosis-specific gene, PCH2, whose product
localizes predominantly to the nucleolus [26••]. During
pachytene when chromosomes are fully condensed and
synapsed, most of Pch2 localizes to the nucleolus, a region

that does not undergo synapsis and recombination. A small
pool of Pch2 is also found in a punctuate pattern along
synapsed chromosomes. Localization of Pch2 to the nucle-
olus requires SIR2 and, consistently, inactivation of SIR2
also caused inactivation of the pachytene checkpoint. How
Pch2 functions in the nucleolus to inhibit meiotic cell-cycle
progression in response to defects in recombination or
synapsis is at present unclear. The absence of or defects in
synapsis could lead to accumulation of Pch2 (which other-
wise localizes along paired homologs) in the nucleolus
where it is recognized as ‘non-nucleolar’, causing the acti-
vation of the pachytene checkpoint. Alternatively, as PCH2
is required for repression of recombination in the rDNA
region, inactivation of PCH2 could lead to increased recom-
bination in the rDNA region, leading to activation of the
pachytene checkpoint. Clearly, determining Pch2’s func-
tion and the analysis of pch2 mutants defective in nucleolar
localization will be required to determine the role of nucle-
olar Pch2 in regulation of the pachytene checkpoint.

Conclusions
Work over the last year has revealed a new role for the nucle-
olus in regulating the activity of proteins involved in various
aspects of cell-cycle progression. Sequestration in the nucle-
olus prevents proteins from reaching their targets in other
cellular compartments. Whether more proteins exist that are
regulated in this way remains to be determined. The exis-
tence of a sequence that drives nucleolar localization would
help identify such proteins. However, although basic amino
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Figure 2

Regulation of Mdm2 and p53 by p19Arf. In
response to oncogenic signals and replicative
senescence, p19Arf sequesters Mdm2 in the
nucleolus. This prevents Mdm2 from exporting
p53 into the cytoplasm where it is degraded.
Thereby, p19Arf stabilizes p53, allowing it to
induce cell-cycle arrest or apoptosis.
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acid stretches are required for nucleolar localization, recruit-
ment into the nucleolus does not appear to be brought about
by a common targeting signal. Rather, interactions with
other proteins already present in the nucleolus recruit pro-
teins into this compartment. This raises the interesting
possibility that rDNA binding proteins exist that function as
anchors or ‘nucleolar receptors’ for other proteins. Cfi1/Net1
could be such an anchor. Cfi1/Net1 not only sequesters
Cdc14 in the nucleolus but also anchors Sir2 [22••]. As Pch2
localization to the nucleolus depends on Sir2 [26••],
Cfi1/Net1 is probably also responsible for anchoring Pch2.
Whether this involves direct binding of Cfi1/Net1 to Pch2
remains to be determined.

It is certainly puzzling that cells choose sequestration in
the nucleolus as a means of inhibiting protein function.
Perhaps the nucleolus is one of the few places in the cell
where a protein, that functions in the nucleus and cyto-
plasm and whose activity needs to be tightly regulated can
be locked away until it is required. Consistent with this
idea is the finding that proteins present in the nucleolus
are usually not found in the rest of the nucleus and vice
versa. The advantage of sequestration in the nucleolus, as
opposed to other organelles, is that they can, upon release,
quickly reach their targets in the nucleus and cytoplasm. A
second possibility is that these proteins have another part-
time job in the nucleolus. Indeed, Cdc14 appears to
participate in nucleolar segregation during mitosis [57] and
Pch2 is required to prevent recombination in the rDNA
region [26••]. Whether sequestration in the nucleolus is a
means commonly used by the cell to inhibit the function
of proteins remains to be determined. This will be the
challenge for this millennium.
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