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Mechanisms and applications of pathogen-derived resistance in
transgenic plants
Roger N Beachy

Genes that confer viral pathogen-derived resistance
(PDR) include those for coat proteins, replicases,
movement proteins, defective interfering RNAs and
DNAs, and nontranslated RNAs. In addition to developing
disease-resistant plant varieties for agriculture, PDR has
increased the understanding of viral pathogenesis and
disease. Furthermore, significant advances in elucidating
the fundamental principles underlying resistance will lead
to second and third generation genes that confer increased
levels of sustainable resistance.
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Abbreviations
AlMV alfalfa mosaic virus
CaMV cauliflower mosaic virus
CMV cucumber mosaic virus
CP coat protein
CPMR coat protein mediated resistance
DI defective interfering
GFP green fluorescent protein
MP movement protein
PDR pathogen-derived resistance
PVY potato mosaic virus
Rep-MR replicase-mediated resistance
TEV tobacco etch virus
TMV tobacco mosaic virus
TYLCV tomato yellow leaf curl virus

Introduction
Known plant viruses number more than 1200, and,
although those that cause significant losses in crop yield
may number less than 250, the challenges that face plant
breeders around the world are substantial. Control of
viral disease requires an understanding of the virus, its
replication, the vectors that spread the virus, and the
deployment of useful genes for resistance in high-yielding
varieties. Unfortunately, in all too many cases, particularly
in climates in which vectors and hosts are present all year
round, the battles are won by the pathogens. In many
cases, disease problems are aggravated by agricultural
practices that maximize production and yield rather than
control pests and pathogens.

The first use of PDR to limit virus infection and
disease was reported 11 years ago in the form of
coat protein mediated resistance (CPMR) [1]; since that

time, there have been growing numbers of examples
of resistance as well as the development of a variety
of strategies to achieve resistance. The first commercial
sale of virus-resistant transgenic crops in the US took
place in 1995, with virus-resistant squash by Asgrow Co
(Kalamazoo, MI, USA); more examples are expected to
reach the market place in the near future. The cellular and
molecular mechanisms that are at play in the various types
of PDR remain somewhat obscure, although they are not
totally hidden. The future challenge for scientists in this
field is to develop strategies that broaden the breadth and
increase the degree of resistance. This will be achieved
through fundamental studies that elucidate the molecular
mechanisms of resistance and apply the knowledge thus
derived to develop second and third generation resistance
genes with increased efficacy.

In this review, I will highlight progress in the various
pathogen-derived resistance strategies, indicate the limi-
tations of each strategy, and suggest approaches that are
needed if PDR is to provide sustainable resistance to virus
infection.

Characteristics of plant viruses
Plant viruses belong to a large number of taxonomic groups
with genomes of single- or double-stranded DNA or RNA,
in messenger (+) sense, antisense or ambisense polarity.
Plant viruses may contain 1–12 genetic segments, with
genomes that contain as few as ∼2700 or as many as
∼20 000 nucleotides. Most are simple in structure and do
not contain membranes or glycoproteins, although there
are exceptions. A limited number of plant viruses are seed-
born, infecting the embryo or the seed coat, thus passing
virus to succeeding generations; others are mechanically
transmitted during the handling of plant material by
workers. More frequently, viruses are spread by insect,
fungal, or nematode vectors that distribute the pathogen
throughout a locale or across long distances, depending on
the factors that control the dissemination of the vector.
Most severe epidemics result from dissemination and
infection by one or more viruses (or virus strains) that
infect a susceptible crop variety and spread unchecked
through a locale or region. Interdiction to prevent disease
relies on both interfering with the transmission of the
disease (e.g. applying insecticides or fungicides to control
the vector, reducing access of the vector to reservoirs of
virus in alternative hosts) and planting crop varieties that
are resistant to virus infection or to the vector.

The past 20 years of research have led to a reasonable
degree of understanding of the biochemistry and genetics
of replication of many viruses; unfortunately, the large
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numbers of different types of viruses preclude obtaining
detailed information for each. Nevertheless, there is
growing understanding of the function of viral replicases
and related enzymes, the role of movement (transport)
proteins that enable local and systemic infection, activities
of proteinases that process viral polyproteins, assembly
of virions by coat proteins (CPs), factors that aid virus
acquisition and transmission by vectors.

Strategies of PDR
One might expect that the development of strategies
for PDR to control virus infection and replication would
follow from knowledge of the pathogen. In fact, the
reverse is true, that is, PDR has increased understanding
of virus replication and pathogenesis. Strategies for PDR
are divided into those that require the production of
proteins and those that require only the accumulation
of viral nucleic acid sequences. In general, the former
confer resistance to a broader range of virus strains and
viruses, whereas the latter provide very high levels of
resistance to a specific virus strain. The results of recent
studies of protein-mediated and RNA-mediated resistance
are summarized below.

Coat protein mediated resistance
CPMR was first reported in the tobacco mosaic virus
(TMV)–tobacco model system in 1986 [1], and has since
been used to confer resistance to a number of viruses in a
variety of different plant species [2,3•]. CPMR can provide
either broad or narrow protection; for example, the CP
of TMV provided effective levels of resistance to closely
related strains of TMV and decreasing levels of resistance
to tobamoviruses that share less CP sequence similarity
[4]. The CP gene of potato mosaic virus (PVY) strain N605
provided resistance in transgenic potato plants challenged
with strain N605 and related strain 0803 [5], but the CP
gene of papaya ringspot virus (PRV) strain HA provided
resistance in papaya only to strain HA [6]. (It is unclear
in the latter case whether resistance was due to the CP
or the gene transcript; see discussion of RNA-mediated
resistance.) In contrast, the CP of soybean mosaic virus
(SMV), which is incapable of infecting tobacco, conferred
resistance in tobacco to two unrelated potyviruses, PVY
and tobacco etch virus (TEV) [7]. It is unclear why some
CPs provide broad or strong degrees of CPMR whereas
others provide only narrow or weak resistance. To achieve
broad resistance to three different strains of tomato spotted
wilt virus, genes encoding the nucleoprotein from each
strain were combined in a single construct [8].

CPMR to TMV requires that the CP produced from the
transgene is capable of subunit–subunit interactions but
not necessarily capable of forming virus particles [9•].
CP apparently interferes with the disassembly of TMV,
thereby preventing infection [10]; furthermore, there is
a direct correlation between the amount of CP and the
level of resistance [11]. Certain mutants of the TMV CP,

constructed on the basis of the known structure of the
virus [12], can confer much greater levels of resistance than
wild-type CP (M Bendahmane, RN Beachy, unpublished
data). One of the mutant CPs appears to block disassembly
as well as replication and local and systemic spread of
challenge virus. In contrast, in a study of CPMR against
alfalfa mosaic virus (AlMV), CP mutants that failed to
activate AlMV replication were nevertheless conferred
CPMR [13•]. The authors suggested that protection was
due to the binding of CP to a host factor involved in
disassembly; however, it is also possible that disassembly
was blocked by CP–virion interactions as proposed for
CPMR to TMV (above). Although there are a number of
examples of CPMR to potyviruses, there are exceptions.
For example, wild-type CP does not protect tobacco plants
against TEV unless sequences are deleted from the amino
terminus of the protein; however, resistance is lost if the
truncated CP is mutated such that self-assembly of CP
to form virus-like particles is prevented (A Voloudakis,
C Malpica, RN Beachy, unpublished data). It was
recently suggested that potyvirus CPs may confer CPMR
by interacting in some manner with nuclear inclusion
protein b, a replication protein [14••]. This result may
indicate that CPs can confer resistance via a variety of
mechanisms, and that as yet undetermined structural
features of the protein are essential for resistance.

Based upon the successes that have been achieved in
improving CPMR against TMV, for which the structure
of CP is known, it is clear that knowledge of the
three-dimensional structures of other CP molecules and
the role of CP in regulating infection and/or replication
will significantly aid the design of mutant CPs that have
increased efficacy and breadth of protection. The use of
transient assay systems will make it possible to test mutant
proteins for activity in protection assays and will reduce
dependence, at least in part, on transgenic plants to test
proteins for CPMR [13•,15••].

Replicase-mediated resistance
Genes that encode complete or partial replicase proteins
can confer near immunity to infection that is generally, but
not always, limited to the virus strain from which the gene
sequence was obtained. Replicase-mediated resistance
(Rep-MR) to TMV was first described in transgenic plants
that contain a sequence encoding a 54 kDa fragment of
replicase, although the protein fragment was not detected
[16]. Although it was suggested that certain examples of
Rep-MR are RNA- rather than protein-mediated [17•],
other examples require an open reading frame and,
apparently, production of protein [18,19]. A truncated
mutant of replicase derived from a cucumber mosaic
virus (CMV) subgroup I virus conferred high levels of
resistance in tobacco plants to all subgroup I CMV strains,
but not to subgroup II strains or other viruses [19]. In
Rep-MR against PVY [20] and AlMV [21], mutant but
not wild-type replicase conferred resistance to infection; a
similar approach provided resistance to tomato yellow leaf
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curl virus (TYLCV), a geminivirus (single-stranded DNA
genome) [22•].

The mechanisms that are involved in Rep-MR are not
known, although it was shown that plants exhibiting
Rep-MR can strongly repress replication, and, in many
cases, are resistant to high levels of challenge inoculum.
It is proposed that protein produced by the transgene
interferes in some manner with the function of the
replicase produced by the virus, perhaps by binding to
host factors or virus proteins that regulate replication and
virus gene expression. In Rep-MR against CMV, both virus
accumulation and systemic infection were inhibited [23];
this may reflect inhibition of virus replication leading to a
reduction in movement protein. A hallmark of Rep-MR,
like RNA-mediated resistance (described below), is that
it is generally quite specific, although in the case of
Rep-MR against potato leafroll virus (PLRV) resistance
was effective against many different isolates of the virus.
In another example, TMV replicase interrupted by an
insertion sequence element from Agrobacterium (which
occurred fortuitously during vector construction) produced
high levels of resistance in tobacco plants to a wide range
of tobamoviruses but not other viruses [24]. It is proposed
that the mechanism of resistance in these lines is similar to
that in those that produce the 54 kDa fragment of replicase
[16], although it differs in the breadth of protection.

Movement protein mediated resistance
Movement proteins (MPs) are encoded by plant viruses
and enable infections to spread between adjacent cells
(local spread) as well as systemically [25•]. Intercellular
spread involves plasmodesmata, the channels that traverse
plant cell walls and provide symplastic continuity between
cells and tissues. Because several MPs were shown to
accumulate in plasmodesmata, virus MPs are also used to
study protein targeting in plant cells as well as the nature
and composition of the plasmodesmata.

It is not known how MPs facilitate the transport of virus
particles or viral nucleic acid from sites of synthesis and as-
sembly to and through plasmodesmata. Geminivirus DNA
is replicated in nuclei and transport of the single-stranded
genome from nucleus to cytoplasm requires one type
of viral protein, whereas a second protein transports the
DNA to adjacent cells [26•]. In contrast, RNA-containing
viruses replicate in the cytoplasm. Many MPs, purified
from Escherichia coli, bind single-stranded nucleic acids
in vitro in a sequence nonspecific manner, yet it is likely
that high specificity is maintained in vivo [25•]. TMV MP
fused with the jellyfish green fluorescent protein (GFP)
retains its function of spreading TMV from cell to cell
and has been used to study MP function in protoplasts
as well as in leaf tissues [27••,28••]. Fluorescence mi-
croscopy showed that MP accumulates in several different
subcellular locations, including microtubules [27••,29••]
and plasmodesmata [28••], and that MP is associated
with the endoplasmic reticulum (M Heinlein, personal

communication); however, the function of MP in each of
these sites remains to be determined. MP produced in
transgenic plants can enable MP− mutants of TMV [30,31]
to move to adjacent cells, and it was predicted that certain
defective mutants of MP (dMP) would restrict infection by
TMV and perhaps other viruses [32]. Similar predictions
were made based on studies of a geminivirus MP [33].
Indeed, transgenic plants that contain dMP from TMV
show resistance to several tobamoviruses as well as to
AlMV, cauliflower mosaic virus (CaMV) and other viruses
[34,35•]. A mutation that disrupted a putative nucleotide
binding site of one of three MPs of white clover mottle
virus (WClMV) conferred resistance to several different
potexviruses [36]. Although the degree of resistance was
not equally high against each virus tested in these studies,
it is anticipated that knowledge of MP structure and
in vivo function(s) will lead to development of other
mutant proteins or peptides that act as dominant negative
inhibitors to block the local and systemic spread of many
different viruses with high efficiency.

Nucleic acid mediated resistance
A variety of PDR strategies involve the expression of
genes encoding nucleic acids that lack the capacity to
encode proteins. One of the earliest approaches was
the expression of antisense RNA sequences to reduce
the replication of RNA viruses: in some cases, virus
infection was affected little if at all [37,38], whereas in
others, infection was more strongly inhibited [39••,40].
Although it is possible that RNA-mediated suppression
(discussed below) was responsible for some of the (−) sense
mediated resistance reported to date, other mechanisms
may also be responsible, including the interruption of
template selection by the replicase, or the formation
and subsequent degradation of double-stranded RNA.
Antisense RNA-mediated resistance is expected to be
relatively narrow, providing protection to the virus from
which sequences are derived but not to strains that have
regions of significant variation from sequences of the
transgene.

Antisense RNA strategies were also somewhat effective
in controlling geminivirus infections [41], in which repli-
cation and transcription take place in the nucleus. The
fact that some transgenic lines exhibit significant degrees
of resistance indicates that the transgene can provide
sufficient levels of antisense RNA to reduce the rates of
virus replication and/or gene expression.

Other strategies involve sequences that represent de-
fective interfering (DI) RNAs and DNAs [17•]; such
molecules are produced during replication of certain
viruses by deleting selected viral sequences while re-
taining sequence elements that ensure replication by the
virus. DIs redirect replication from the genome in favor
of the DI molecule and can dramatically reduce the
amount of infectious virus and disease symptoms. Satellite
RNAs are similar in some ways to DI molecules, but
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generally retain little sequence similarity with the virus
from which they are derived and on which they depend
for replication. Transgenes encoding DI RNAs or DNAs
and satellite RNAs have been tested for their capacity to
reduce replication and disease [42,43] with some degree
of success. In successful cases, both virus replication and
disease symptoms are depressed, a result that indicates
that it may be possible to control infection under field
conditions while preserving productivity of the crop. In
other cases, although disease symptoms are suppressed,
virus replication is not affected, a situation that would do
little to contain the further spread of the virus.

The most widely studied example of nucleic acid medi-
ated resistance is referred to as RNA suppression, a phe-
nomenon that describes the targeted post-transcriptional
destruction of RNA sequences [17•,44]. Although a
relationship between RNA suppression and the more
general phenomenon of transgene silencing [45] has been
strongly implicated [46], the similarities and differences
between these phenomena remain to be explored [47].

RNA suppression mechanisms generally employ genes
that encode (+) sense RNAs but do not lead to the ac-
cumulation of protein. Recent studies have demonstrated
the following: a high correlation between RNA-mediated
resistance and multiple copies of gene inserts and/or
complex arrangements of DNA fragments at one or more
genetic loci [48••]; little or no accumulation of transcript
from the transgene, but moderate to high levels of gene
transcription [49••]; and the methylation of transgene
sequence in promoter regions, coding sequences, or both
[44]. The favored model for PDR by gene silencing
mechanisms is that the cell detects abnormally elevated
levels of RNA sequences, or, more likely, aberrant
RNA structures or modified nucleotides, and activates a
destruction mechanism that involves nuclease digestion
of the gene transcript [17•,44,47]. By an unknown
mechanism, perhaps related to base pairing between the
aberrant RNA and viral (+) or (−) sense RNA, viral
RNA as well as transgene RNA is destroyed. Although
levels of RNA-mediated resistance can be extremely high,
its limitation may be that resistance is effective only
against viruses with genomes that contain sequences that
are similar or identical to the transgene. In addition,
as resistance relies on transgenes whose structure is not
yet defined, and that may include methylation or other
modifications, there is concern that resistance may not be
readily controlled.

Conclusions
A variety of PDR strategies have been used to develop
virus resistance in crop plants, many of which have been
tested under field conditions for eventual commercial
release. CPMR has been the most widely applied PDR
strategy, although other strategies are also under develop-
ment. To improve the degree and breadth of resistance

as well as its durability will require greater knowledge of
the cellular and structural bases of resistance. Once the
structural features of the molecules that confer resistance
are known, it will be possible to construct sequences
that confer increased efficacy and breadth of resistance.
If principles of protein design are applied to construct
dominant negative mutants of virus proteins such as MPs,
it is likely that genes that confer durable PDR to control
many different viruses will represent the next generation
of PDR genes.
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