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Plant stress adaptations — making metabolism move
Hans J Bohnert∗ and Elena Sheveleva

Persistently sub-optimal environmental conditions constitute
stress. Perception and signaling lead to protein expression
changes, the activation of new biochemical pathways,
and repression of others which are characteristic of the
unstressed state. Protective metabolic adaptations alter
physiological reactions of the whole plant. Paramount among
the mechanisms are oxygen radical scavenging, maintenance
of ion uptake and water balance, and reactions altering
carbon and nitrogen allocation, such that reducing power
is defused. Elements of the stress signaling pathways and
proteins that lead to stress protection have recently become
known.
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Abbreviations
ASX ascorbate peroxidase
DMSP dimethylsulfoniopropionate
HKT high affinity K+ transporter
HOG phosphorylation cascade (‘high osmolarity glycerol’)
LEA late embryogenesis-abundant
ROS reactive oxygen species
SOD superoxide dismutase

Introduction
Plants experience shade or high light levels, sub-zero,
low or high temperatures, drought, flooding, high salinity,
inorganic nutrient imbalance, infection, predation, and
natural or man-made toxic compounds — all of which
can be stressful if they persist. Setting aside toxic
stresses, for example excess of heavy metal ions or
permanent lack of water in a true desert, we will
focus on plant adaptive responses to resource stresses
that generate osmotic imbalance, such as part-day low
temperature, temporary lack of rain, or fluctuating sodium
salinity. Osmotic stress perception and signaling, which
has come into the focus of research on environmental
stresses [1••,2••,3•,4–6,7••], is translated into biochemical
reactions, metabolic adjustments and altered physiological
state, thus re-programing the progression of development.
Relevant to the topic of stress-mediated adjustments
of metabolism is the recognition that stress responses
are elicited through several pathways and that these
pathways are cross-wired [1••,2••,3•,4,5]. At least four
signal transduction chains exist in plants for responding
to drought, salinity and low temperature. An abscisic
acid (ABA)-dependent pathway responds to drought and

salinity signals. This pathway is itself complex, because
some ABA-inducible stress responses depend on protein
synthesis, but others utilize existing components of
the signaling transduction chain [1••,2••,7••]. A second
signaling pathway, which does not depend on abscisic acid,
shows yet another bifurcation with differential responses
of genes that are either affected by cold, salinity and
drought, or by salinity and drought only. The receptors that
sense drought or salinity are not yet identified — they may
be similar to yeast osmo-sensors [4]. Emphasis here is on
the biochemical mechanisms elicited by plant counterparts
of ubiquitous signal transduction pathways, similar to, for
example, the yeast HOG (phosphorylation cascade)-path-
way determining carbohydrate allocation changes under
stress, and similar to the yeast phosphorylation-relay
in which the protein phosphatase calcineurin plays an
important role [5], controlling water and ion uptake and
ion exclusion or export during environmental stress [5,6].

Metabolism under stress
Drought, salinity and low temperature affect uptake
and conductance of water. Environmental factors that
affect water supply lead to changes in stomatal opening
which can, if stress persists, set in motion a chain of
events originating from changes in the concentration of
leaf-internal carbon dioxide, consecutively affecting the
carbon reduction cycle, light reactions, energy charge,
and proton pumping [8–12,13••]. Other pathways are
affected as a result of increased shuttling of carbon
through the photorespiratory cycle [9]. Eventually, carbon
and nitrogen allocation and storage require readjustment;
reactions that lead to the consumption of reducing
power become favored, and development and growth may
become altered [8–12]. During the past few years, the
complex interrelationship of biochemical pathways that
change during stress has become appreciated, although
we are far from understanding this complexity; several
review articles are available [2••,8–12]. In Figure 1
mechanisms for which experimental evidence indicates
an important contribution to metabolic adjustments under
stress at the cell level are illustrated with the names
of proteins, enzymes and metabolites. The significance
of these mechanisms is supported by gene discovery,
with stress-dependent regulation of the corresponding
transcripts, or by biochemical analyses. Further support
comes from experiments with transgenic plants (which
might be termed ‘transgenovars’, e.g., N. tabacum tgv)
expressing proteins encoded by such transcripts.

The importance of ROS scavenging
In photosynthetic organisms, the inevitable production of
reactive oxygen species (ROS) leads to singlet oxygen,
superoxide, hydrogen peroxide and hydroxyl radicals, but
ROS are also formed in processes which are not related to
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Enzymes, proteins, metabolites important in plant cellular stress
responses. Stresses lead to increased production of reactive
oxygen species (ROS) which are counteracted by changes in the
activity and or amount of ROS scavenging systems [13••]. Stress
leads to increased proton pumping across plasma membrane
(P-ATPase) and tonoplast membrane (PPi-ase, V-ATPase) [8–10,29].
Compartmentation of sodium during salt stress is accomplished by
a tonoplast Na+/H+-antiport system [29] and potassium levels in the
cytosol are maintained to some degree. Compensating the osmotic
pressure generated by vacuolar sodium, cytosolic amounts of a
variety of metabolites increase (exemplified by polyol, glycinebetaine,
and proline) [9,10]. The mechanism of entry of sodium into the
cytosol is not known, potassium transporters or channels might be
responsible [24••,25], but uptake by a sodium/proton symporter also
seems possible [48•]. The stress-dependent regulation of aquaporins
indicates their involvement as water channels during stress responses
and some may also function in metabolite or ion transport.

photosynthesis-specific reactions [13••,14••]. In addition,
ROS serve as signaling molecules [13••,15•], for example
in the recognition of attack by fungal pathogens [15•].
Mechanisms of ROS detoxification exist in all plants —
enzymatic (for example, superoxide dismutase (SOD),
ascorbate peroxidase (ASX), glutathione cycle (GST/GPX)
and non-enzymatic (flavonones, anthocyanins, carotenoids,
ascorbic acid, etc.) — and these suffice under normal con-
ditions. Following stress, ROS increase and upregulation
of mRNA transcript and protein levels or accelerated
turnover of components of detoxification systems have
been shown [13••,16,17]. To some extent, the transgenic
enhancement of ROS scavenging components has been
shown to positively affect plant performance during stress
[16–18], but protection has not been observed in all
experiments [13••]. It would certainly be premature to
consider the protection provided by the over-expression of
SOD, ASX, or enzymes of the ascorbate/glutathione cycle
as the final word. Protection has typically been observed
in strictly controlled environments, and protective effects
have often been marginal. Many reasons can be given
[13••], but one consideration may suffice — for example,
in the case of ASX, we can expect at least six different
isoforms which are located in mitochondria, chloroplasts
(several, in different sub-compartments/membranes), sol-
uble in the cytosol, and in the cytoplasmic endomembrane
system [19••]. A similarly complex distribution has been

seen for SOD isoforms [13••] which are found in the cy-
tosol (copper/zinc-SOD), mitochondria (manganese-SOD)
and plastids (iron-SOD and copper/zinc-SOD). Thus, it
seems transgenic modifications of single enzymes are
likely to have a minimal effect because of the multitude
of compartments that require protection. In addition, in
most transgenic experiments little attention has been
paid to the ‘when’, ‘where’, and ‘how much’ aspects of
transgene expression — significantly more attention needs
to be directed to the promoter elements that drive these
transgenes [10,20•].

Excellent evidence for a protective effect of ROS
scavenging systems has recently been provided by the
overexpression of an enzyme with combined activities
of glutathione S-transferase, GST, and glutathione per-
oxidase, GPX [18]. By doubling the GST/GPX activity
in transgenic tobacco, the seedlings and plants showed
significantly faster growth than wild-type during chilling
and salt stress episodes. The increased enzyme activities
resulted in higher amounts of oxidized glutathione in the
stressed plants, indicating that the oxidized form could
provide an increased sink for reducing power.

Functions of accumulating ions and
metabolites
A general stress response in all kingdoms is the accumula-
tion of ions (potassium, sodium and calcium) and increased
amounts of metabolites which are a part of normal
metabolism and which are considered compatible solutes.
Examples are sugars, sugar alcohols, low-complexity car-
bohydrates (e.g., fructans, raffinose series), tertiary amines,
sulfonium compounds and amino acids [8,9,21–23•]. Table
1 lists transgenic experiments, mostly with tobacco, with
genes that lead to the synthesis of these compounds (and
to the synthesis of a late embryogenesis-abundant [LEA]
protein). In all cases some protective effect has been
observed with the expressed transgenes.

The accumulation of potassium in the vacuole is a
preferred strategy which lowers the osmotic potential
of the cell. Several potassium channels and transporters
which seem to work at different external concentrations
have been discovered [24••]. Channels seem to constitute
a low-affinity uptake system operating in the millimolar
range, while high-affinity transporters operate at micromo-
lar concentrations of external potassium. The regulation
of potassium-transport during stress, the cellular location
of transporters, and the extent to which the uptake
systems discriminate between sodium and potassium
during salinity stress is intensely debated [24••,25,26••].
Although the functional characteristics of the wheat
HTK (high affinity K+-transporter) have been clearly
documented by expression of the transporter in yeast [25],
the degree to which this transport system is involved
in plants, and in which cells or tissues it is located,
remain controversial. New transporters and routes for
potassium uptake (including ATPases and amino acid- or
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Table 1

Transgenically expressed proteins with effects on water deficit, salinity stress, or oxygen radical protection.

Gene
(Source species) Enzyme Host species Notes

MnSOD Manganese-superoxide N. tabacum Organelle targeted expression leading to reduced damage
(N. plumbaginifolia) dismutase M. sativa by reactive oxygen species.

MtlD Mannitol 1-P dehydrogenase N. tabacum Sodium tolerance at early growth; enhanced seed
(E. coli) A. thaliana germination in sodium chloride; reactive oxygen species

scavenging in chloroplasts.
N. tabacum Protection of calvin-cycle enzymes.

Hva1 HVA1-late embryogenesis O. sativa Maintenance of higher growth rate by stressed plants [55].
(H. vulgare) abundant protein

Imt1 Myo-inositol N. tabacum Stress-induced accumulation of D-ononitol based on
(M. crystallinum) O-methyltransferase substrate availability.

SacB Levansucrase N. tabacum Fructan accumulation; higher growth rate during drought.
(B. subtilis)

Tps1 Trehalose synthase N. tabacum Increased drought tolerance at low concentration.
(S. cerevisiae)

CodA Choline oxidase A. thaliana Glycine betaine accumulation: enhanced low temperature
(A. globiformis) and salinity tolerance.

P5CS Pyrroline 5-carboxylate N. tabacum Proline accumulation lowering osmotic potential.
(V. aconitifolia) synthase

FeSOD Iron-superoxidase N. tabacum Photosystem II and membrane protection; methyl viologen
(A. thaliana) dismutase resistance.

Gst/Gpx Glutathione-S-transferase N. tabacum Increased oxidized glutathione enhanced seedling
(N. tabacum) /glutathione peroxidase growth.

Although documented effects of overexpression indicate protection, the mechanisms leading to enhanced tolerance under controlled growth
conditions are not understood. A note of caution has recently been voiced [54]; the accumulation of mannitol in a transgenic tobacco line was
shown to reduce growth by up to 40%. Such reduction in growth might lead to less sodium uptake which might be misinterpreted as an increase
in tolerance. References can be found in [10,55,56].

sugar-transporters) are continually being found [27•,28•],
indicating a surprising number and variety of different
systems for the regulation of potassium acquisition.

For osmotic adjustment during salt stress, the uptake
of abundantly available sodium provides an advantage,
if sodium can effectively be partitioned and confined
to the vacuole. This strategy is used by halophytic
plants, but even plants that are generally considered
sodium excluders will take up and partition sodium
during prolonged stress. Exactly through which transport
systems, and along which route sodium enters the root and
vascular system, and how it is directed to the vacuole of
mesophyll cells is not clear. It may be that the high-affinity
HKT-type potassium-transporters constitute major ports
of entry, because the wheat HKT, when expressed
in yeast, has been shown to discriminate ineffectively
between potassium and sodium [25]. Sodium uptake
through HKT-type transporters may be a mechanism for
loading sodium into root cells at low external potassium
concentrations. The mechanisms that lead to long-distance
transport of sodium and loading into mesophyll cells
are not known. Confinement of sodium to vacuoles is

accomplished by sodium/proton antiporters which have
been characterized only physiologically [29].

In contrast to ion accumulation which provides for a lower
osmotic potential cheaply, functions of other accumulators
prove more difficult to assess. Increased sugars and amino
acids provide osmotic potential and some protection, but
these metabolites are also part of normal metabolism
with which their accumulation might interfere. Sensing
systems that can alter partitioning and tissue allocation
as well as gene expression have been described for
reducing sugars [30,31,32•]. Their accumulation during
stress might be pathological. Similarly, the accumulation
of proline in a large number of species may result from
metabolic disturbance. We view proline accumulation
as a consequence of altered nitrogen allocation. Proline
overexpression does provide for a lowering of the osmotic
potential in transgenic plants when proline feedback
inhibition of the rate-limiting enzyme is abolished [22],
but this engineered situation is not reflected during the
normal accumulation of proline under stress. In stressed
non-transformed tobacco plants, for example, proline
amounts vary in a diurnal cycle [33]. It is difficult to
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imagine how five-fold day/night fluctuations in proline
concentration might provide protection considering that
cellular sodium levels do not change accordingly [33].
It seems that proline’s true function in osmotic stress
protection is still to be determined. This notion is
supported by the analysis of a highly salt-sensitive
Arabidopsis mutant with a defective potassium uptake
system, which accumulates more proline than wild-type
without becoming more stress-resistant [34].

To what extent have transgenic plants provided insights?
Engineered expression has been reported for genes
that lead to the accumulation of proline, trehalose,
polyols, fructan, ectoine (in bacteria), LEA proteins,
glycinebetaine, ROS scavenging enzymes and support
sytems (Table 1, [10,21–23]). In most reports, some
protective effect has been observed, but not enough to
call the marginal increases of tolerance under defined
conditions an unqualified success that could be trans-
posed to growing plants under natural stress conditions.
Published results from field tests are missing, but such
analyses are underway — not with transgenic plants
but in a comparison between glycinebetaine-deficient
and glycinebetaine-containing maize breeding lines ([35],
Rhodes D, personal communication).

Multiple functions?
Osmotic adjustment through metabolite accumulation,
ROS scavenging, adjustments in carbon/nitrogen balance,
the ‘burning’ of excess reducing power, and alternative
carbon or nitrogen storage have frequently been proposed
as possible functions of the diverse reactions characterizing
plant stress responses. Why should we not assume multi-
ple functions for each or at least some of the accumulating
metabolites? Newer data support this multiple function
notion. Mannitol may accumulate in some species to
osmotically significant amounts which lowers the osmotic
potential of cells. This may be allowed because mannitol
and other polyols seem not to interfere with the normal
sugar-sensing systems in plants. In addition, mannitol
provides protection even at low concentrations due to a
specific role in scavenging of hydroxyl radicals that are
produced in a Fenton-reaction between free Fe2+, which
is present in sufficiently high concentrations in plant cells,
and hydrogen peroxide [13••,14••,36•]. In vitro and in
vivo experiments indicate that glycinebetaine also could
have such dual function. It stabilizes, first, the native
structure of proteins and protects membranes. Effects of
glycinebetaine on the osmotic potential have been shown
in near-isogenic corn lines which are distinguished only
by glycinebetaine content [35] and by gene transfer of
a bifunctional choline oxidase, converting choline into
glycine betaine, into Arabidopsis [37]. It may further serve
as an end-product that accepts excess methyl groups from

a stress-related increase in photorespiration, although this
function is still hypothetical [9].

Yeast and Arabidopsis as models
Saccharomyces cerevisiae, whose entire genome has been
sequenced, is the ideal model for investigating the
responses of plants to osmotic stress at the cell organization
level — at least in the absence of the DNA sequence of a
whole plant genome. The Arabidopsis genome sequence
will, however, become available by 2001 and possibly 20%
of the genomic DNA will have been published by the
end of 1998 [38•]. This sequence, complemented by a
set of mutants covering every Arabidopsis gene, and the
techniques available for manipulating Arabidopsis will be
powerful tools for finding all stress-related plant genes.
One of the first benefits from such a sequence will be
the possibility of using micro-array techniques for genome-
wide monitoring of all genes that are expressed under any
condition which is already extensively being used in yeast
studies [39,40]. Meanwhile, the complementation of yeast
mutants, or of knock-out strains in which specific genes for
a mechanism already studied in yeast have been deleted,
is a most economical way for finding corresponding,
homologous plant stress response mechanisms. The power
of yeast complementation has been documented by, for
example, the detection of potassium-transport systems [25]
or amino acid transporters [41]. In addition, strains have
been constructed which lack glycerol production, a natural
yeast salinity stress response [42••,43••]. For studying the
function of accumulating metabolites, other than glycerol,
such transgenic yeast strains will provide more insight
than transformed plants in the short term. Once we
have learned about functions in yeast, the search for
plant mutant phenotypes, physiological and biochemical
analyses in non-transformed plants and transgenic plant
studies can become more focused.

New models, new pathways, new functions
Other models that complement Arabidopsis and yeast are
members of the extremely dehydration-tolerant ‘resurrec-
tion’ plants, with representatives in the ferns, mosses, and
angiosperms [11], the salt-tolerant alga Dunaliella salina
[44] and the halophytic angiosperm Mesembryanthemum
crystallinum (iceplant) [45••].

Apart from the already well-known compounds, several
new metabolites have been studied in recent years.
One is ectoine, a zwitter-ionic tetrahydropyrimidine of
which different derivatives are known. In vitro ex-
periments document strong protective effects of ec-
toine on enzyme activity in the presence of sodium.
Stress-dependent uptake and accumulation of externally
provided ectoine have been detected in bacteria in-
habiting extreme habitats [46•,47]. It can be expected
that the protective effect of ectoine biosynthesis and
accumulation will soon be tested in transgenic plants.
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Better known are derivatives of myo-inositol which appear
in a great variety of mono- or di-methylated forms in
many species of diverse evolutionary history, including
oak (Hammamelididae), soybean (Rosidae) and iceplant
(Caryophyllidae). Best known is the pathway from the
iceplant where the genes and proteins of this pathway have
been characterized [45••,48•]. Originating from glucose-
6-phosphate, the ubiquitous pathway to myo-inositol is
extended leading to two methyl-inositols, ononitol and
pinitol. The pathway, which seems to be either absent
or not expressed in most plants, is stress-regulated in
the iceplant and, upon stress, becomes the major route
for carbon metabolism during the initial stress adaptation
period. The very high accumulation of pinitol in the
cytoplasm which parallels vacuolar sodium concentrations
constitutes probably the clearest example of osmotic
adjustment [45••], but even this pathway, however, seems
to have, at least, two functions. Inositol and its methylated
derivative ononitol are, in a stress-dependent fashion,
transported to the roots and then recycled back to the
leaves through the xylem. Xylem transport of inositol
is positively correlated with sodium transport. In the
leaves, sodium enters the vacuole and ononitol/pinitol are
confined to the cytosol [48•]. It seems that this cycle
effectively synchronizes long-distance sodium transport
with leaf photosynthetic capacity and vacuolar space in
leaf cells. We suggest that this mechanism includes a
sodium/inositol symporter similar to systems described in
other organisms [49].

A similar case can be made for the occurrence of
enzymes that lead to the biosynthesis of dimethylsul-
foniopropionate (DMSP). The recent elucidation of the
biochemical pathway of this compound in marine algae
[50] provides evidence for its stress-alleviating function
— DMSP seems to replace glycinebetaine in habitats
that are nitrogen-limited. A second function of DMSP
seems to be that it acts as a protectant against predation
[51••]. In addition, the volatility of DMSP might indicate
yet another function, namely in a capacity for ‘burning’
reducing power as it is synthesized and released into the
water and atmosphere.

Continued water supply is a critical aspect for stresses
that affect water uptake or transport through the vascular
system. The recent discovery of proteins that act as
water channels — termed aquaporins — and the stress-de-
pendent regulation of the expression of several of these
channels is an indication for their involvement in water
uptake. The Arabidopsis genome includes at least 23
genes that encode proteins of the water channel family,
several of which have been functionally characterized
and are located in either the plasma membrane or the
tonoplast membrane [52••]. It is not known whether
all 23 are aquaporins, some may function in metabolite

or ion transport. Stress-dependent altered expression,
both up and down, of several putative aquaporins has
been reported in Arabidopsis and in other plants [52••].
Regulation of activity may be by phosphorylation of
individual aquaporins, by changes in oligomerization,
and possibly also by cycling through the endomembrane
system, that is, removal from the plasma membrane or
tonoplast during stress and either degradation and new
synthesis of the aquaporins or re-insertion of existing
proteins into the membrane as has been observed in
animal systems [53]. The existence of specific channels for
facilitated water movement in plants has been accepted
only reluctantly, and working out the details of their
functioning and possible contribution to stress protection
requires more work.

Conclusions
The next few years will see rapid progress in our
understanding of the molecular genetic basis of stress
perception, in how plants and cells measure and quan-
titate deviations from their innate ‘set-value of maximal
comfort’, in how hormonal, metabolic, and biochemical
stress responses change physiology and development.
In addition, we expect that genome sequences and
micro-array analysis will provide a complete inventory of
the genes whose expression is affected by stress. The
nature of many upregulated transcripts will be indicative
of a function in protection.

The universality of stress responses is probably the most
salient feature of analyses over the last five years. All plants
react to the various abiotic stresses by a signal relay whose
components and cross-wiring are similar to those described
in yeast [3•-5]. The network of interactions between
different inputs and signaling channels that is formed
in a plant-specific way drives metabolic adjustments
which include reactions that are common to all or
nearly all plant species, such as changes in carbon
allocation and nitrogen/ carbon balance, ROS scavenging,
and adjustments in metabolism which affect the redox
state. Different orders, families, and species evolved
different pathways and accomplish protection through
different biochemical adjustments. They are variations
of general themes, exemplified by the accumulation of
glycinebetaine, DMSP, ectoine, methyl-inositols, or amino
acids.
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