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Genetic engineering for fungal and bacterial diseases
Dilip M Shah

Significant new advances at the molecular level in the field
of plant–pathogen interactions form the basis for novel
transgenic approaches to crop protection. The cloning of
disease resistance genes and the dissection of the signal
transduction components of the hypersensitive response
and systemic acquired resistance pathways have greatly
increased the diversity of options available for transgenic
disease resistance. These new approaches will supplement
our rapidly increasing repertoire of antimicrobial peptides,
defense-related proteins and antimicrobial compounds. The
combinatorial deployment of these strategies will be exploited
for engineering effective and durable resistance to pathogens
in the field. The integration of transgenic approaches with
classical resistance breeding offers a potentially chemical-free
and environmentally friendly solution for controlling pathogens.
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Abbreviations
Avr avirulence
BTH benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester
HR hypersensitive response
PR pathogenesis-related
R resistance
RIP ribosome-inactivating protein
ROS reactive oxygen species
SA salicylic acid
SAR systemic acquired resistance

Introduction
Since the early days of organized agriculture, bacterial and
fungal pathogens have formed intimate, and often highly
evolved, interactions with cultivated crops. These interac-
tions often result in serious outbreaks of disease. Despite
the use of sophisticated crop protection measures, many
bacterial and fungal pathogens still remain formidable
enemies posing a serious threat to crops. The intensive
use of monoculture crops with little genetic diversity
in modern agriculture has significantly enhanced their
susceptibility to increasingly aggressive pathogens. With
the exception of disease epidemics that lead to complete
crop destruction, global loss because of pathogens is
estimated to be 12% of potential crop production [1].
The highest losses, estimated at more than $42 billion per
year, occur in vegetables, fruits and rice. These losses
occur despite the application of an increasing quantity of
fungicides annually. In addition to causing yield losses,
pathogens also reduce the quality of food and feed.
Mycotoxins produced by Fusarium spp. and Aspergillus spp.

often contaminate grain and peanuts and affect human and
animal health.

As the world population continues to increase, en-
vironmentally safe and economically viable means of
disease control are needed. The classical R (resistance)
genes will continue to be deployed in the develop-
ment of disease-resistant crops; however, for certain
less-specialized pathogens causing root and fruit diseases,
classical resistance is not available. Such resistance is often
limited by its lack of durability as pathogens quickly
evolve to overcome it. Furthermore, classical resistance
is often polygenic, making introgression into commercial
cultivars via breeding time-consuming and difficult.

With the development of transformation technology for
several important crops during the past decade, excit-
ing opportunities for engineering crop protection have
emerged. Several new advances in our understanding
of the biology of plant–pathogen interactions [2•] form
the basis for new and viable approaches for engineer-
ing resistance to pathogens in transgenic crops. The
cloning and structure–function analysis of a number of
R genes conditioning resistance to the bacterial and
fungal pathogens in a race-specific manner, the molecular
dissection of the downstream R gene interactions, and
progress toward defining the various steps leading to the
elicitation of hypersensitive response (HR) and systemic
acquired resistance (SAR) have paved the way toward
the production of transgenic crops with broad-spectrum
resistance. Furthermore, several novel cysteine-rich anti-
microbial peptides and other defense-related proteins with
significant potential to impart in planta resistance have
been isolated and cloned. In this review, I only discuss the
implications of these very recent advances in developing
engineered defense against pathogens in crops. The reader
is referred to several earlier reviews on this topic [3–6].

Resistance through combinatorial expression
of plant defense genes
Several defense-related genes encoding chitinases, glu-
canases, peroxidases and pathogenesis-related (PR) pro-
teins are either constitutively expressed or induced upon
pathogen infection. The proteins encoded by these genes
display in vitro antimicrobial activity, suggesting a formal
role in plant defense. Individually, some of these genes
impart partial resistance to fungal pathogens in transgenic
plants; however, the level of resistance appears to be
insufficient for practical use [3–6]. The fungal cell wall
degrading enzymes chitinases and glucanases have been
examined extensively for their potential to afford resis-
tance to fungal pathogens in transgenic plants. Synergistic
in vitro antifungal activity between the basic isoforms
of tobacco chitinase and glucanase has been previously
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reported [7]. In tomato, the coexpression of tobacco
genes encoding both enzymes leads to greatly enhanced
resistance to Fusarium wilt disease [8••]. Transgenic
carrot plants expressing this pair of tobacco enzymes
displayed high levels of resistance to both Alternaria
and Cercospora species in the field, consistent with their
synergistic in vitro antifungal activity (LC Melchers,
personal communication). Combinatorial expression of
other chitinase and glucanase genes has also proven
very effective in providing resistance to fungal pathogens
in transgenic tobacco [9,10••]. The approach of using
combinations of plant defense genes to achieve effective
control of fungal pathogens has also been extended
to ribosome-inactivating protein (RIP), which inhibits
eukaryotic protein translation and is thought to play a role
in plant defense. The antifungal activity of a barley RIP
was synergistically enhanced in the presence of fungal cell
wall hydrolases [10••]. Higher levels of fungal resistance
were observed in transgenic plants that coexpressed the
barley RIP and the chitinase.

There is a growing body of evidence to suggest that PR
proteins are causally associated with disease resistance.
Several members of the PR1, PR2 (glucanases), PR3 (chiti-
nases), PR4 (chitin-binding) and PR5 (thaumatin-like)
classes of proteins have displayed in vitro antimicrobial
activity. In addition to PR2 and PR3, in planta efficacy of
PR1a and PR5 from tobacco for fungal control has also
been reported. Furthermore, when PR1a is coexpressed
with another tobacco PR protein, SAR8.2, synergistic
antifungal activity was observed (J Ryals, personal com-
munication). Based on these studies, a combinatorial
expression of plant defense genes where each single gene
provides partial resistance appears to be a preferred avenue
for engineering crop protection.

Resistance through expression of small
antimicrobial peptides
The deployment of small antimicrobial peptides for
defense against microbes represents a defense strategy
that is conserved in evolution [11–13]. Recent evidence
indicates that plants produce a number of antimicrobial
peptides to ward off pathogenic attack [14]. Several
distinct classes of peptides differing in their amino acid
sequences have been reported. These include cysteine-
rich antimicrobial peptides, plant defensins, thionins,
lipid-transfer proteins and 2S albumins [14]. Of these,
plant defensins share amino acid sequence homology
with their insect and mammalian homologs and display
strong, often broad-spectrum, in vitro antifungal activity
[15•]. Two defensin-like peptides isolated from radish
seed, Rs-AFP1 and Rs-AFP2, have been shown to inhibit
the growth of several pathogenic fungi in vitro [16].
The expression of Rs-AFP2 in transgenic tobacco confers
resistance to attack by Alternaria longipes [17••], although
the spectrum of fungal resistance has not been fully
investigated. Two homologous peptides, Rs-AFP3 and

4, are also induced in radish leaves upon infection by
A. longipes, thus further substantiating the role of defensins
in plant defense. Two sugar beet leaf defensins, AX1
and AX2, homologs of the radish AFP2, have been
isolated after infection with the fungal pathogen Cercospora
beticola [18]. The preliminary results indicate that the
expression of these peptides in transgenic corn plants
imparts significant resistance to Northern corn leaf blight
caused by the fungal pathogen Exserohilium turcicum.

None of the other classes of antimicrobial peptides
have yet been shown to confer resistance to fungal
pathogens in planta. One potential problem with some
of these peptides is that their in vitro antimicrobial
activity is greatly reduced in the presence of physiological
concentrations of inorganic cations. This may limit their
in planta efficacy [19•]. In one report, the α-thionin
gene from barley has been demonstrated to confer
enhanced resistance to a bacterial pathogen Pseudomonas
syringae in transgenic tobacco plants [20]. The isolation of
antimicrobial peptides with potent in vitro activity is an
active area of research in a number of laboratories and
offers hope for providing enhanced resistance to pathogens
in transgenic crops.

Resistance through manipulation of reactive
oxygen species and phytoalexins
Reactive oxygen species (ROS; H2O2, O2−, OH.) play
important roles in various defense responses of the plants
[21,22•,23•]. A prolonged local oxidative burst is one of
the earliest events correlated with plant resistance at the
site of pathogen invasion. Besides being directly toxic to
microbes, the ROS perhaps trigger the cell death pathway
leading to the HR. The ROS are required for the covalent
cross-linking of cell wall proteins and they activate
expression of cellular protectant genes. There is also some
evidence that ROS may have a signaling role in salicylic
acid (SA) accumulation. The direct evidence that ROS are
involved in conferring disease resistance was provided by
the constitutive expression of an H2O2-generating glucose
oxidase gene from Aspergillus niger in transgenic potato
[24••]. Transgenic tubers exhibited strong resistance to
bacterial soft rot disease, caused by Erwinia carotovora,
and this resistance was apparently mediated by elevated
levels of H2O2 because it could be eliminated through
the exogenous addition of catalase. Enhanced resistance
to the potato fungal pathogens Phytophthora infestans and
Verticillium dahliae was also demonstrated and it correlated
with elevated levels of H2O2. The preliminary results
indicate that some PR genes, including those for acidic
chitinase, basic glucanase and anionic peroxidase, are
also activated in transgenic potato plants in the absence
of pathogen infection (G Wu, personal communication).
Thus, the expression of an H2O2-generating enzyme
in transgenic plants represents a novel strategy for
engineering broad-spectrum resistance to bacterial and
fungal pathogens.
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The low-molecular weight antimicrobial compounds called
phytoalexins are produced by plants upon pathogen infec-
tion and have long been implicated as playing an important
role in disease resistance [25•]. Recently, the strategy of
producing a foreign phytoalexin in transgenic plants has
been shown to confer significantly enhanced resistance
to fungal pathogens [26]. The expression of a grapevine
stilbene synthase gene from its own promoter in tobacco
leads to the pathogen-induced accumulation of resver-
atrol, promoting resistance to Botrytis cinerea [27]. The
extent to which interspecific transfer of other phytoalexin
biosynthesis genes to impart effective resistance will be
possible remains to be seen. Genes encoding pinosylvin
synthase from Scots pine and bibenzyl synthase from
orchid have been cloned and introduced into tobacco, but
data on their in planta efficacy are not available [26]. Given
the complexity of phytoalexin biosynthesis pathways and
the multitude of the enzymes involved, it is unlikely
that the transfer of a single gene will impart effective
resistance. Recently identified phytoalexin-deficient (pad)
mutants of Arabidopsis will be particularly useful for the
isolation of regulatory genes involved in the phytoalexin
pathway [28]. Interestingly, these mutants are unaffected
in their resistance to an avirulent isolate of the bacterial
pathogen P. syringae but allow enhanced growth of a
virulent isolate. One of these mutants, pad4, displays
enhanced susceptibility to biotrophic fungal pathogens
indicating that the Pad4 gene is involved in conferring
fungal resistance (F Ausubel, personal communication).
The regulatory genes involved in a phytoalexin pathway
may facilitate engineered resistance through manipulation
of the endogenous phytoalexin levels.

Resistance through deployment of R genes
HR is triggered in response to an incompatible interaction
between a plant and a nonpathogen or an avirulent
pathogen and involves rapid, localized, programmed cell
death. Although frequently associated with resistance, it
is not clear if HR alone is sufficient to restrict a pathogen
at the site of infection. HR is often accompanied by the
activation of a multitude of local and systemic defense
responses [29]. These responses may be critical for the
resistance reaction of the host. A great deal of specificity
has developed during the evolution of the host–pathogen
interaction. The genetic analysis of this specificity has
revealed that it is determined by specific R genes in the
host and their corresponding avr (avirulence) genes in
the pathogen, commonly in a one-to-one correspondence.
The molecular basis for these gene–gene interactions for
several host–pathogen systems is currently under intense
investigation because of the recent breakthrough in the
cloning of a number of R genes providing resistance
against bacterial, fungal and viral pathogens. The reader
is referred to several recent reviews that provide detailed
descriptions of the cloning and partial characterization
of the R genes, the structural domains and the signal
transducing potential of their gene products and the partial
characterization of their interaction with the downstream

signal transduction components [30,31•,32•,33,34,35••].
The relevance of these important discoveries to the
genetic engineering of disease resistance in crops has
been discussed at length in [31•,32•,35••]. The successful
transfer of functional R genes between closely related
species through genetic transformation clearly represents
a significant step toward the goal of deploying R genes for
engineered resistance in crops. For example, the Pto gene
from tomato promotes HR-based resistance to Pseudomonas
syringae pv. tabaci pathogens carrying avrPto in tobacco
species [36•,37•]. The tobacco N gene provides resistance
to tobacco mosaic virus (TMV) in tomato [38•]. The
tomato Cf9 gene functions in tobacco and potato (J Jones,
personal communication). The intergeneric transfer of
downy mildew R genes may also be feasible between
Arabidopsis and Brassica species, as indicated by the
observation that some of the downy mildew R genes
from Arabidopsis recognize the downy mildew pathogens
of Brassica oleracea [39•]; however, as noted by Bent [35••]
and Crute and Pink [40•], it is difficult to predict the
success of intergeneric transfer of R genes to distantly
related species because some components of the signal
transduction pathway will be specific to R genes and
absent in distantly related species. Greater knowledge of
the signal transduction pathway at the molecular level
is needed to design rational strategies for the functional
transfer of R genes in distantly related species.

Plant breeders have widely utilized the strategy of
pyramiding R loci in traditional plant breeding to allow
recognition by the host of multiple races of the evolving
pathogen population in the field. Although this strategy
for resistance breeding has yielded significant benefits to
the farmer, generating an effective combination of R genes
in many crop species is time-consuming, costly and often
associated with yield drag. With molecular tools in hand
to isolate large families of similar R genes recognizing
multiple races of a pathogen, the transgenic approach of
pyramiding R genes will be possible in the near future.
Crute and Pink [40•] have discussed the rate-limiting
factors impinging upon the success of such an approach.
They also discuss the benefits of marker-aided selection
for the directed transfer of R genes in crop species to
provide durable disease control.

De Wit [41] proposed a two-component strategy for
engineering broad-spectrum resistance using the cloned
R–avr gene pair. It is based on eliciting an HR in
plants containing an R gene with pathogen-inducible
expression of the cognate avr gene. The advantage of
this approach is that the resistance response is only
triggered upon pathogen infection and is independent
of race specificity. The challenge is to find a promoter
that is only activated locally by pathogen invasion of
the host. That such an approach might be feasible is
indicated by a recent success in inhibiting the late blight
disease caused by P. infestans in transgenic potato using
pathogen-inducible prp-1 promoter-driven expression of a
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bacterial ribonuclease (barnase) that elicited localized HR
[42••]. Further confidence in the proposed two-component
system stems from the genetic experiments with the
Cf9–avr9 gene system in tomato. The tomato plants in
which Cf9 function is restored through somatic excision of
a transposable element and in which avr9 is constitutively
expressed display defense-related somatic necrotic sectors
and resistance to a number of pathogens such as late
blight and powdery mildew [31•]. Whether or not this
type of genetically imposed resistance, designated genetic
acquired resistance, will be practically useful remains to be
determined.

R genes recognizing multiple or all races of a pathogen
are of special interest. The examples include Bs2, Xa21
and mlo. The Bs2 gene from pepper [43] recognizes a
common virulence determinant of Xanthomonas campestris
pv. vesicatoria and thus may provide durable resistance
against Xanthomonads in general when introduced into
transgenic plants. The Xa21 gene of rice confers resistance
to all known races of the bacterial vascular pathogen
Xanthomonas oryzae pv. oryzae and has been recently
cloned [44]. Furthermore, the cloned gene has been
shown to confer resistance to 29 different isolates in
transgenic rice plants [45•]. The recessive mlo gene from
barley imparts non-race-specific resistance to powdery
mildew. It has proven remarkably durable in the field
against this pathogen and has been introduced into an
estimated 700 000 ha of European barley. The mlo gene
operates by a distinct mechanism: fungal penetration
is arrested in the epidermal papillae that form before
fungal attack and HR-like lesions seldom appear [46]. The
mlo gene from barley has been cloned using map-based
cloning (P Schulz-Leferet, personal communication); the
availability of this gene from barley might allow the
transgenic engineering of wheat for powdery mildew
resistance through an antisense gene strategy. R genes
capable of recognizing multiple isolates of a pathogen will
be very useful for engineering broad-spectrum resistance
in crops.

New insights from HR and SAR pathways
The strength of HR-based resistance is the induction of
multi factorial defense pathways [47•]. A large number
of lesion-mimic mutants that develop necrotic lesions
spontaneously are providing important new insights into
molecular mechanisms triggering cell death and the
activation of defense mechanisms that are reminiscent of
incompatible interactions [48,49•,50••]. As illustrated by
Dangl et al. [50••], many of these mutants in maize and
Arabidopsis behave as if constantly under pathogen attack
and display many of the molecular markers associated
with resistance responses, including increased SA levels,
the activation of PR genes and heightened resistance to
bacterial and fungal pathogens. Many of the lesion-mimic
mutants of Arabidopsis have already been placed into an
SA-dependent resistance pathway [50••]. Further detailed

genetic and biochemical characterization of these mutants,
including the cloning of the genes involved, is in
progress in a number of laboratories. Genes identified by
these mutations might be useful for activating defense
mechanisms in transgenic crops. Further support for this
comes from several examples of plant and microbial
transgenes that cause the lesion-mimic phenotype in
transgenic plants and activate local and systemic disease
resistance pathways. The recent noteworthy examples are
transgenic tobacco plants expressing the bacterio-opsin
gene from Halobacterium halobium [51], the yeast invertase
gene [52] or the cholera toxin gene [53]. These genes
will have little practical use because they compromise the
growth of plants.

Tremendous progress has been made during the past
few years in deciphering molecular aspects of SAR, an
inducible plant defense response triggered by necrotizing
infection that culminates in broad-spectrum, systemic
resistance to bacterial, fungal and viral pathogens [54,55••].
Some of the important milestones of SAR research
are outlined here. It is clear that SA accumulation
is necessary for the establishment and maintenance of
SAR. The question of whether SA is a systemic signal
is still unresolved. Several SAR marker genes have
been identified for tobacco, Arabidopsis and other plants.
The chemical activators, such as 2,6-dichloro isonicotinic
acid (INA) and benzo(1,2,3)thiadiazole-7-carbothioic acid
S-methyl ester (BTH), of SAR have been identified. BTH
will be useful agronomically as it provides effective control
of powdery mildew in wheat without causing crop injury
[56••]. This resistance to powdery mildew in BTH-treated
wheat resembles that during the incompatible interaction
and is correlated with the induction of a number of
mRNAs. Several Arabidopsis mutants in the SAR signal
transduction pathway have been identified. In addition
to the lesion-mimic mutants mentioned above, mutants
displaying the constitutive expression of PR genes and
immunity have been described. These mutants, known
as cim or cpr, are resistant to normally virulent pathogens
and this resistance is not always associated with cell
death. The third class of mutants, termed nim or npr, are
deficient in the pathogen- or chemical-induced SAR. The
molecular cloning of genes identified by these mutants is
currently in progress. The Npr1 gene of Arabidopsis has
been recently isolated using a map-based cloning approach
and encodes a novel protein containing ankyrin repeats
[57••]. It will be interesting to determine if overexpression
of the Arabidopsis Npr1 gene or its homologs from other
plants will lead to constitutive activation of SAR in crop
plants. New evidence is emerging that there may be
more than one pathway for triggering the SAR pathway in
plants. One of these pathways induced by root-colonizing
nonpathogenic biocontrol bacteria in Arabidopsis appears
to be independent of SA and PR gene expression [58•].
Our greatly expanding knowledge base of this interesting
and broadly effective resistance mechanism of plants will
lead to engineered crops with enhanced resistance and to
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the discovery of other novel crop protection chemicals with
unique mode-of-action in near future.

Conclusions
The range of potential strategies for genetically engi-
neered resistance in crops has expanded dramatically
during the past few years. Our repertoire of novel
transgenes encoding highly potent antimicrobial peptides,
defense-related proteins and enzymes for the production
of antimicrobial compounds (e.g. phytoalexin) has greatly
increased. The combinatorial deployment of these trans-
genes in crops is likely to provide practically useful levels
of disease control. This type of combinatorial resistance
may, in fact, be desirable, as it may provide more durable
resistance in the face of a constantly evolving pathogen
population. The recent cloning of R genes and the
characterization of signal transduction pathways for HR
and SAR have greatly increased the diversity of transgenic
approaches available for improved disease resistance. The
careful integration of transgenic approaches with classical
resistance breeding will form the basis for a new revolution
in agriculture for enhanced productivity.
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